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Abstract

Introduction: In a five-arm randomized clinical trial (RCT) with stratified randomization across 54 sites, we
encountered low primary outcome event proportions, resulting in multiple sites with zero events either overall or in
one or more study arms. In this paper, we systematically evaluated different statistical methods of accounting for
center in settings with low outcome event proportions.

Methods: We conducted a simulation study and a reanalysis of a completed RCT to compare five popular methods
of estimating an odds ratio for multicenter trials with stratified randomization by center: (i) no center adjustment,
(ii) random intercept model, (iii) Mantel–Haenszel model, (iv) generalized estimating equation (GEE) with an
exchangeable correlation structure, and (v) GEE with small sample correction (GEE-small sample correction). We
varied the number of total participants (200, 500, 1000, 5000), number of centers (5, 50, 100), control group
outcome percentage (2%, 5%, 10%), true odds ratio (1, > 1), intra-class correlation coefficient (ICC) (0.025, 0.075), and
distribution of participants across the centers (balanced, skewed).

Results: Mantel–Haenszel methods generally performed poorly in terms of power and bias and led to the exclusion of
participants from the analysis because some centers had no events. Failure to account for center in the analysis generally
led to lower power and type I error rates than other methods, particularly with ICC = 0.075. GEE had an inflated type I
error rate except in some settings with a large number of centers. GEE-small sample correction maintained the type I
error rate at the nominal level but suffered from reduced power and convergence issues in some settings when the
number of centers was small. Random intercept models generally performed well in most scenarios, except with a low
event rate (i.e., 2% scenario) and small total sample size (n≤ 500), when all methods had issues.

Discussion: Random intercept models generally performed best across most scenarios. GEE-small sample correction
performed well when the number of centers was large. We do not recommend the use of Mantel–Haenszel, GEE, or
models that do not account for center. When the expected event rate is low, we suggest that the statistical analysis plan
specify an alternative method in the case of non-convergence of the primary method.

Keywords: Multicenter trial, Binary outcomes, Low event rate, Randomized clinical trial, Random effects, GEE, Small
sample adjustment, Mantel–Haenszel, Stratified randomization
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Introduction
Multicenter randomized clinical trials (RCTs) that enroll
participants from multiple settings (e.g., countries, hos-
pitals, clinics, or villages; hereafter “centers”) are increas-
ingly common in contemporary health and social
sciences research. This is primarily because they hasten
and increase total recruitment while promoting the
generalizability of trial results. However, enrollment at
multiple locations can introduce variation in participant
composition and outcomes among centers as well as dis-
proportional enrollment across centers. As such, multi-
center trials sometimes use center as a stratification
factor in the randomization procedure to ensure that an
equal number of participants is allocated to each study
group within each center. When randomization is strati-
fied by a study center (or any other factor), it is neces-
sary to account for this in the trial analysis [1, 2]. If the
stratification factors are not accounted for, the resulting
standard errors (SEs) of the treatment effect estimate
can be biased upwards, leading to p values that are too
large and confidence intervals (CIs) that are too wide, ef-
fectively reducing statistical power.
The focus of this paper is the analysis of multicenter

trials with stratified randomization by center and a bin-
ary outcome with extremely low outcome event rates.
When there are very low event rates, it is likely that
there will be some centers where no participants
Fig. 1 Distribution of participants who were randomized (light gray) and who
companies in the motivating five-arm randomized trial of workplace smoking
and 80 achieved sustained cessation, resulting in several companies with no p
experience an event, or only participants in one study
group experience an event, which poses a challenge for
the statistical analysis. This question was motivated by a
recent RCT in which we enrolled 6006 smokers from 54
companies (i.e., centers) to test four workplace-based
smoking cessation interventions against usual care [3].
The participating companies were of different underlying
sizes and contributed a median of 59 participants (range,
6 to 552; interquartile range, 38 to 130; Fig. 1). Due to
expected correlations among individuals within each
company (and notable differences between companies),
we stratified the randomization by company. Therefore,
adjustment for company in the analysis was deemed ne-
cessary and was part of the initial statistical analysis
plan. Our study design predicted 6-month smoking ces-
sation proportions of 2.5% in the usual care arm and
7.5% in the intervention arms. At the end of the trial,
the number of individuals who ceased smoking for 6
months was much lower than expected in all arms, with
only 80 total individuals having quit smoking (1.3%).
The cessation percentages across the five arms were
0.1%, 0.5%, 1.0%, 2.0%, and 2.9%. As a result, many com-
panies had zero individuals who quit either overall or in
one or more study arms (Fig. 1).
This example highlights a statistical tension. Some

common methods of adjustment for center, such as
fixed-effects models or Mantel–Haenszel methods, will
had sustained cessation (black) from smoking for 6 months, across 54
cessation programs [3]. A total of 6006 participants were randomized,
articipants quitting either overall or in more than one study arm
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exclude participants from the analysis if they belong to a
center in which no participants in a certain treatment
arm experienced an event or all participants in that
center were allocated to the same treatment arm. This
exclusion of participants can lead to a loss of statistical
power and precision and directly contradicts the
intention-to-treat principle. Thus, the goal of this paper
is to provide practical guidance on the optimal statistical
method for odds ratio estimation with center adjustment
when randomization has been stratified by center and
the outcome event proportions may be extremely low.
To accomplish this aim, we sought to identify the statis-
tical solution that would meet certain pre-established
criteria. Specifically, we sought to identify a method that
(i) does not drop any participants from the analysis un-
necessarily, adhering to the intention-to-treat principle;
(ii) has a high probability of reaching convergence; (iii)
gives an unbiased estimation of the SE so as to achieve
appropriate CI coverage and type I error rate; and (iv)
maximizes statistical power.
Previous work has discussed options for the analysis of

multicenter trials with low event rates [4] and empiric-
ally evaluated methods of analysis with binary outcomes
with moderate event rates using simulation [5–7]. How-
ever, to our knowledge, there have been no studies that
have empirically evaluated common methods of estimat-
ing an odds ratio in multicenter trials with low event
rates. We therefore conducted a simulation study to
compare these methods across a range of possible trial
scenarios. We begin with a description of methods that
are commonly used in practice and then present a statis-
tical simulation study to evaluate these methods. We
then present a reanalysis of the motivating RCT using
the selected methods. Finally, we summarize and provide
practical recommendations for researchers.
Methods
In a multicenter trial, the variance of the treatment effect
estimate is influenced by the intra-class correlation coeffi-
cient (ICC), which indicates the similarity of outcomes of
participants within a cluster relative to those in other clus-
ters. In other words, the ICC measures the percentage of
the total variability explained by different centers and can
be written as σ2c=ðσ2

c þ σ2
εÞ , where σ2c is between-center

variance and σ2ε is the variance of the random error. It is
well known that ignoring site-specific correlation in the
analysis after randomization has been stratified by center
can reduce power proportional to the ICC value [1]. Kahan
[5] suggested adjusting for center effects to ensure correct
p values and to avoid a loss of power when randomization
is stratified by center. In addition, even if center is not a
stratification factor, we might adjust for center effects to
increase power when the ICC is expected to be large.
To adjust for center effects, we can use either a mar-
ginal or conditional model. These models target different
treatment estimands (i.e., marginal vs. conditional esti-
mand), and for the odds ratio, the true value of these
estimands is different in general [8, 9]. If the treatment
effect is null or the ICC is 0, the true value of the
estimands is equal. As the ICC increases, so too will the
difference between the estimands’ values. These estimands
have different interpretations; marginal estimands com-
pare the change in odds for participants across centers,
whereas conditional estimands compare the change in the
odds for participants within the same center [8, 9].
In this paper, we examined five methods of analysis:

one approach that ignores center in the analysis, as well
as four commonly used statistical models that adjust for
center. The five models are (i) logistic regression model
with no adjustment for center (unadjusted), (ii) mixed-
effects logistic regression model with a random intercept
for center (RE), (iii) the Mantel–Haenszel method, (iv)
generalized estimating equation (GEE) with an exchange-
able correlation structure across centers and robust SEs,
and (v) GEE with small sample correction (GEE-small
sample correction). Of note, we did not examine fixed-
effect models (where each center is included as a covariate
in the model using indicator variables), as these methods
have previously been shown to perform poorly for binary
outcomes with low event rates [5], and they exclude
participants in centers with no events. In particular, the
use of fixed effects is inappropriate in the context of our
motivating example and simulation settings, as the number
of parameters in the model would approach or exceed the
number of events. The problem of participant exclusion
from centers with no events is also a limitation of the
Mantel–Haenszel approach, but because this method is
commonly taught as a way to estimate overall and stratified
odds ratios, we felt it would be useful to examine its statis-
tical performance. Finally, we did not consider the issue of
treatment-by-center interaction and assumed that the odds
ratio for treatment was the same across all centers.

Center-unadjusted logistic regression model
A center-unadjusted logistic model targets a marginal
estimand and can be written as:

yij � Bernoulli pij
� �

logit πij
� � ¼ αþ βtrtXij

where yij is the binary outcome for the ith participant in
the jth center with pij = P(Yij = 1), πij = pij/(1 − pij), Xij is a
treatment indicator, and the coefficient βtrt is the log
odds ratio for treatment. Additional continuous or
categorical predictor variables can be included in the



Table 1 Trial settings and parameters examined in the statistical
simulation study

Trial design characteristics Settings

Total sample size 200, 500, 1000, and 5000

Number of centers 5, 50, and 100

ICC 0.025 and 0.075

Control group event probability 0.02, 0.05, and 0.10

Distribution of participants across centers Balanced and skewed

True odds ratio 1 and > 1

Randomization ratio 1:1

Permuted block size 4
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model. In our case of not accounting for center effects,
the model includes only the treatment indicator, Xij.

Center adjusted models
Conditional models

Mixed-effects logistic regression model with a random
intercept for center The random intercept model can
be written as:

logit πij
� � ¼ αþ βtrtXij þ uj

where the notation is defined as above and uj is a ran-
dom intercept for the jth center, generally assumed to
be distributed uj~N (0, σ2). The random intercept model
includes both fixed (βtrt) and random (uj) components.
The parameter σ2 provides a summary of the variation
among centers. A random intercept model is able to in-
clude participants from all centers in the analysis, even
when all participants are randomized to the same group
or all participants in a treatment group within a center
experience the same outcome. Previous studies have
shown that random-effects models provide unbiased es-
timates of the treatment effect, preserve the type I error
rate at its nominal level, and have good power [5, 6].
However, they have not been evaluated in settings with
extremely low event rates.

Mantel–Haenszel The Mantel–Haenszel approach cal-
culates an odds ratio within each center and then gener-
ates a combined common odds ratio by weighting the
center-specific odds ratios according to the number of
participants in each center. For a 2 × 2 × J table, where
j = 1, …, J indexes centers, the estimate of the common
odds ratio is:

ORMH ¼
P

j

a jd j

n jP
j

b jc j
n j

where aj and bj indicate the number of participants with
and without an event in the treatment group, respect-
ively; cj and dj indicate the number of participants with
and without an event in the control group, respectively;
and nj is the total number of participants in the jth
center. Mantel–Haenszel models exclude participants
from centers where all participants are randomized to
the same group or all participants in a treatment group
within a center experience the same outcome. As such,
Mantel–Haenszel methods can lead to lower power and
bias when many participants are excluded from the
analysis [4, 5].
Marginal models

Generalized estimating equation A logistic regression
model using GEE is written as:

logit πij
� � ¼ αþ βtrtXij

To obtain the GEE estimates, a working correlation
structure must be specified (e.g., independent, exchange-

able). Following Liang and Zeger [10], the estimates β̂

can be obtained by solving the estimating equation
PK

i¼1

D
0
iV

− 1
i ðY i − μiÞ ¼ 0, where Di ¼ ∂μi

∂β
0 , and the variance of

β̂ is estimated by:

V ¼ Ω
XK
i¼1

D
0
iV

− 1
i bribri 0V − 1

i Di

 !
Ω;

where Ω ¼ ðPK
i¼1D

0
iV

− 1
i DiÞ − 1

; and bribri 0 = dCovðY iÞ ,
with bri ¼ Y i − bμi . This variance–covariance estimator is
called the “sandwich” or “robust” estimator and is com-
monly used to calculate SEs for GEEs. It is a consistent
estimator of the true underlying variance–covariance
matrix even if the correlation structure is incorrectly
specified. In our simulation study, we used robust SE
estimators and chose the exchangeable correlation as
a working correlation structure, which assumes that
all outcomes within a center are equally correlated,
corr(Yij, Yik) = ρ, j ≠ k.

GEE with small sample correction The robust variance
estimator is often employed in GEE models because it
produces unbiased SE estimates for regression coefficients
even when the covariance structure is mis-specified. How-
ever, the robust covariance matrix estimator relies on
asymptotic theory, which assumes a large number of
centers. Thus, the robust SEs typically reported for GEEs
are downward-biased when the number of centers is
small, leading to an inflated type I error rate [11, 12]. This
fact restricts the application of GEEs in settings with a



Table 2 Example of a skewed participant distribution with 5
centers and a total sample size of 500 participants

Center 1 Center 2 Center 3 Center 4 Center 5

Number of
participants

113 84 102 97 104
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small number of centers. Therefore, several small sample
corrections for GEEs have been proposed to improve its
performance with a small or medium number of centers
[13, 14]. These methods adjust the estimated variance
without affecting the estimated treatment effect. The Fay
and Graubard correction has been shown to perform well
with a small number of clusters [13], and so in our simula-
tion study, we applied their correction [14] to evaluate its
performance in terms of the type I error rate and power.
Fay and Graubard suggested the corrected sandwich esti-
mator, defined as:

V FG ¼ Ω
XK
i¼1

ciD
0
iV

− 1
i bribri 0V − 1

i Dici

 !
Ω;

where ci ¼ f1 − minðb; fD0
iV

− 1
i DiΩgjjÞ

− 1=2
and b is a

constant bound for bias correction defined by the user;
it should be less than 1 to prevent extreme adjustments

when element j,j of fD0
iV

− 1
i DiΩg is very close to 1 [14].
Fig. 2 Type I error rates for scenarios when the number of centers was 5, 5
and 5000. The ICC was fixed at 0.025, and the participant distribution was s
was not available because of convergence issues when the number of cen
Fay and Graubard arbitrarily used b = 0.75 in simula-
tions, achieving almost exactly the same results when
run without the bound b. We also set b = 0.75 (the de-
fault in R) in this simulation study.

Simulation study
We considered a multicenter clinical trial with J centers
where participants were randomized to a treatment or
control group using a 1:1 allocation ratio. To cover a
variety of study designs, we varied several parameters,
including the number of centers, total number of partici-
pants, ICC, control arm event proportion (probability),
and treatment effect, as summarized in Table 1.

Methods of analysis
All simulations were performed using R 3.5.1 [15]. We
used the “glm” function to fit the unadjusted model
(which ignored center) and the “glmer” function in the
“lme4” [16] package to fit the random intercept (RE)
model, with the number of points per axis for evaluating
the adaptive Gauss–Hermite approximation set to 9.
The “mantelhaen.test” function was used to fit the
Mantel–Haenszel method. GEE models were implemented
using the “geeglm” function in the package “geepack” [17],
and GEE with small sample correction was estimated using
0, and 100 and the total number of participants was 200, 500, 1000,
kewed across the centers. *The value for the Mantel–Haenszel model
ters was 100 and the number of total participants was 200
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the “saws” [14] package. Sample R code is provided in the
online supplement.

Data-generating mechanism
For each setting, we simulated 5000 hypothetical trial
datasets, expecting small error due to the large number
of repetitions. The choice of 5000 repetitions was arbi-
trary but justified by sufficiently low Monte Carlo errors.
The datasets for each combination of parameters were
generated from the following model:

Y �
ij ¼ αþ βtrtXij þ uj þ εij

where Y �
ij is a latent variable generated by given parame-

ters. The treatment indicator Xij was generated using
permuted blocks stratified by center with a block size of
4. A random center effect uj was generated from a
normal distribution with a mean of 0 and standard devi-
ation σ, which was set by the desired ICC (on the logistic
scale), and εij was a random error from the standard
logistic distribution. The binary outcome Yij was gener-
ated as 1 if the latent variable Y �

ij was greater than 0, and

as 0 otherwise.
The number of centers in each setting was either 5, 50,

or 100, and the total number of participants randomized
Fig. 3 Power for scenarios when the number of centers was 5, 50, and 100
The ICC was fixed at 0.025, and the participant distribution was skewed acr
available because of convergence issues when the number of centers was
was 200, 500, 1000, or 5000. The ICC was set to either
0.025 or 0.075 (on the logit scale), and we used two differ-
ent scenarios for the distribution of participants across the
centers (balanced or skewed). First, we set each center to
have an equal number of participants (balanced). Second,
we set each center to have a different number of partici-
pants (skewed). Every time we generated a sample dataset,
the number of participants in each center was generated
using a multinomial distribution while fixing the total
number of participants. An example distribution of partic-
ipants is provided in Table 2. The actual number of
centers sometimes differed slightly from the target
number of centers (i.e., 5, 50, or 100) when the participant
distribution was skewed, especially when the number of
participants was relatively small (i.e., 200 or 500) com-
pared to the number of centers (i.e., 100). We reported
the actual number of centers in the results. The overall
event probability was 0.02, 0.05, or 0.10 in the control
group. We also set the true odds ratio for treatment to 1
to evaluate the type I error rate. To evaluate statistical
power, the true conditional odds ratio was chosen in order
to provide 80% power based on the given total number of
participants and the event rate in the control group. The
true odds ratio was set based on an increase in events
(denoting a beneficial outcome), meaning that the true
and the total number of participants was 200, 500, 1000, and 5000.
oss the centers. *The value for the Mantel–Haenszel model was not
100 and the number of total participants was 200
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odds ratio was set to be > 1 in these scenarios. Table S1 in
the supplemental material provides the true conditional
odds ratio for each scenario. We calculated the true

marginal odds ratio as βmarginal ≈
βconditional
0:014 for ICC = 0.025

and as βmarginal ≈
βconditional
0:045 for ICC = 0.075 [18]. In our simu-

lation study, we compared estimates from conditional
models (Mantel–Haenszel and random intercept [RE])
against the true conditional odds ratio, and estimates from
marginal models (GEE, GEE-small sample correction,
center-unadjusted model) against the true marginal odds
ratio.
In some repetitions, we encountered model conver-

gence issues, such that the simulation would not
progress. As a solution, we set up a prescreening
approach that excluded from the analysis any data-
generating process that created a simulated trial with
(i) no events or (ii) all events occurring in the same
treatment group.

Estimand
The estimand of interest is the true odds ratio (the true
conditional odds ratio for conditional models and the
true marginal odds ratio for marginal models).
Fig. 4 Estimated mean treatment odds ratio (OR) for scenarios when the tr
the total number of participants was 200, 500, 1000, and 5000. The ICC was
centers. *The value for the Mantel–Haenszel model was not available becau
the number of total participants was 200
Performance measures
For each simulation scenario and model, we estimated
the following measures (along with a Monte Carlo SE
for each):

1. Type I error rate (when the true odds ratio is 1)
2. Power (when the true odds ratio is > 1)
3. Estimated odds ratio
4. Convergence rate
5. Coverage rate of 95% CIs

Type I error rate and power were calculated as the
proportion of the simulation results with a statistically
significant treatment effect with a two-sided significance
level of 5%. The coverage of 95% CIs was estimated as
the proportion of the simulation results in which the
estimated 95% CI contained the true value of the odds
ratio. The mean value of the estimated treatment effect
(i.e., odds ratio) was calculated by exponentiating the
mean of the estimates of βtrt. The Monte Carlo SE for
each performance measure was also provided as an
estimate of simulation uncertainty [19]. In calculating
performance, we included only the repetitions in which the
model successfully converged. The model was classified as
ue odds ratio was 1; the number of centers was 5, 50, and 100; and
fixed at 0.025, and the participant distribution was skewed across the
se of convergence issues when the number of centers was 100 and
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a convergence failure when (i) we received an error
or warning message indicating the analysis did not
converge or (ii) the absolute value of either the odds
ratio for treatment or the SE was greater than 1000.
We chose this approach for non-convergence as there
is no clearly preferable alternative. For instance,
counting non-converged replications in the numerator
or denominator could be misleading as it conflates
convergence issues with statistical issues such as bias
or the type I error rate. In addition, we believed that
the potential for non-convergence was an important
metric for researchers when assessing model options for a
trial.

Reanalysis of the motivating trial
To examine the impact of the five methods assessed in
the statistical simulation study in an actual multicenter
trial with stratified randomization, we undertook a re-
analysis of the motivating five-arm smoking cessation
trial [3]. For this analysis, we used the same commands
as used in the statistical simulation study. For each
approach, we report the sample size, odds ratios, and
95% confidence intervals of the effect estimate using the
e-cigarettes group as the reference group.
Fig. 5 Coverage of 95% confidence intervals for scenarios when the true o
total number of participants was 200, 500, 1000, and 5000. The ICC was fixe
centers. *The value for the Mantel–Haenszel model was not available becau
the number of total participants was 200
Results
Computational issues
We encountered issues related to convergence, particularly
with the “gee” function in R. This was the most problem-
atic in settings with a skewed participant distribution
across centers and when both the number of centers and
total participants were small. Because the “gee” function is
used for the GEE-small sample correction method in R,
there were several replications where we could not obtain
estimates in certain settings because of convergence failure.
We also examined these datasets using the “xtgeebcv” [20]
package in Stata, where convergence also sometimes failed.
As noted above, we encountered issues with model conver-
gence with the Mantel–Haenszel approach in similar set-
tings. Unadjusted logistic models, RE, and GEE (“geeglm”
function) generally had high convergence rates.

Simulation study
Results for type I error, power, estimated odds ratio,
coverage of 95% CI, and convergence rate are shown in
Figs. 2, 3, 4, 5, and 6, respectively. For ease, we
summarize the key results of the simulation study here.
We also provide a narrative summary of results by the
total number of centers in the online supplement for
dds ratio was 1; the number of centers was 5, 50, and 100; and the
d at 0.025, and the participant distribution was skewed across the
se of convergence issues when the number of centers was 100 and



Fig. 6 Convergence for scenarios when the true odds ratio was 1; the number of centers was 5, 50, and 100; and the total number of
participants was 200, 500, 1000, and 5000. The ICC was fixed at 0.025, and the participant distribution was even across the centers
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researchers who are considering studies with a fixed
number of sites. In addition, Supplemental Figures S1 to
S15 in the online supplement summarize additional
results from the simulation study.
Overall, when the sample size was small (n = 200 and

500) and the event proportion was low (2%), all of the
examined methods produced biased odds ratios, type I
error rates that were below the nominal level, and low
power. The model that did not account for center had a
lower than nominal type I error rate and reduced power
compared to RE, GEE, or GEE-small sample correction,
particularly when the ICC was 0.075.
The RE model performed well in most other scenarios

and performed as well or better than other methods in
terms of the nominal type I error rate, power, and un-
biased estimates in most scenarios (Tables 3 and 4). The
one exception was when there were 100 centers and 200
total participants, when RE models gave slightly biased
estimates when the true odds ratio was greater than 1.
The Mantel–Haenszel method gave biased estimates,

lower than nominal type I error rates, and low power in
many scenarios. Further, when the participant distribu-
tion across centers was skewed, the number of centers
was large, and the number of participants was small, we
encountered issues with model convergence.
With a small number of centers, the GEE method
produced an inflated type I error rate. This improved
with a larger number of centers but was still problematic
in some scenarios. Conversely, the GEE-small sample
correction approach maintained the type I error rate at
the nominal level even when the number of centers was
small. However, in these scenarios, the GEE-small sam-
ple correction approach had much lower power than RE
models. When the number of centers was moderate to
large, GEE-small sample correction gave close to nom-
inal type I error rates and good power across all scenar-
ios and performed comparably to RE models.

Reanalysis of the motivating smoking-cessation trial
The motivation for this work was a five-arm RCT, in
which 6006 smokers employed by 54 companies were
randomly assigned to one of four smoking cessation in-
terventions or to usual care [3]. The primary outcome
was sustained abstinence from smoking through 6
months, achieved by 80 (1.3%) of the 6006 randomized
participants (Table 5). The original analysis used a RE
model, and the estimated ICC was 0.0045 (95% CI
0.0005 to 0.0117). There are several things to note in the
reanalysis shown in Table 5. First, the unadjusted, RE,
and GEE models all produced similar results. The GEE-



Table 3 Type I error, mean estimated odds ratio (OR), convergence rate (%), and coverage of 95% confidence intervals when the
number of centers was 5, the ICC was 0.025, the event rate was 10%, the participant distribution across centers was skewed, and the
true OR was 1

Number of participants (n) Measurement Unadjusted RE MH GEE GEE-small
sample
correction

n = 200 Type I error 0.046 0.047 0.030 0.157 0.044

MCSE (type I error) 0.003 0.003 0.002 0.005 0.003

Mean 1 1 1 1 1

MCSE (mean) 0.007 0.007 0.007 0.007 0.007

Convergence 100 100 100 99.4 97.08

Coverage 0.954 0.953 0.953 0.843 0.881

MCSE (coverage) 0.003 0.003 0.003 0.005 0.005

n = 500 Type I error 0.049 0.050 0.037 0.160 0.050

MCSE (type I error) 0.003 0.003 0.003 0.005 0.003

Mean 1 1 1 1 1

MCSE (mean) 0.004 0.004 0.004 0.004 0.004

Convergence 100 100 100 99.9 99.08

Coverage 0.951 0.950 0.95 0.840 0.877

MCSE (coverage) 0.003 0.003 0.003 0.005 0.005

n = 1000 Type I error 0.044 0.045 0.039 0.149 0.048

MCSE (type I error) 0.003 0.003 0.003 0.005 0.003

Mean 1 1 1 1 1

MCSE (mean) 0.003 0.003 0.003 0.003 0.003

Convergence 100 100 100 99.98 99.6

Coverage 0.956 0.955 0.955 0.851 0.884

MCSE (coverage) 0.003 0.003 0.003 0.005 0.005

n = 5000 Type I error 0.047 0.048 0.042 0.154 0.055

MCSE (type I error) 0.003 0.003 0.003 0.005 0.003

Mean 1 1 1 1 1

MCSE (mean) 0.001 0.001 0.001 0.001 0.001

Convergence 100 100 100 100 99.98

Coverage 0.953 0.952 0.952 0.846 0.878

MCSE (coverage) 0.003 0.003 0.003 0.005 0.005

GEE generalized estimating equations, MH Mantel–Haenszel, RE random-effects (i.e., random center intercept), MCSE Monte Carlo standard errors
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small sample correction model failed to converge. Fi-
nally, the Mantel–Haenszel method produced estimates
distinctly different from the other models, and also
excluded some participants, corresponding with what we
observed in the simulation study.

Discussion
In this paper, we evaluated different methods of estimat-
ing an odds ratio in multicenter RCTs with very low
event rates, where some centers, or treatment arms
within centers, experienced no outcome events. We
focused on five popular methods of analysis: (i) no cen-
ter adjustment, (ii) RE, (iii) Mantel–Haenszel model, (iv)
GEE, and (v) GEE-small sample correction. From our
simulation results, we found that RE models performed
well overall, and we recommend their use in most set-
tings. GEE-small sample correction models worked well
when there was a moderate to large number of centers,
while GEE still had a slightly inflated type I error rate,
especially when the number of centers was 50 or the
total participant number was large (i.e., 5000). When the
total number of participants in a trial is small but the
number of centers is high, RE models may give biased
estimates. Thus, GEE or GEE-small sample correction
models could be considered in such situations. Further,
based on our difficulties with model convergence, we
suggest that researchers include an alternative method
in their statistical analysis plans in case the primary



Table 4 Power, mean estimated odds ratio (OR), convergence rate (%), and coverage of 95% confidence intervals when the number
of centers was 100, the ICC was 0.025, the event rate was 10%, the participant distribution across centers was skewed, and the true
OR (conditional) was greater than 1

Number of participants
(n) and true OR

Measurement Unadjusted RE MH GEE GEE-small
sample
correction

n = 200
True OR, 3.0

Power 0.805 0.807 NA 0.809 0.791

MCSE (power) 0.006 0.006 NA 0.006 0.006

Mean 3.1 3.25 NA 3.1 3.1

MCSE (mean) 0.006 0.006 NA 0.006 0.006

Convergence 100 100 0 99.94 99.9

Coverage 0.958 0.959 NA 0.955 0.958

MCSE (coverage) 0.006 0.003 NA 0.003 0.003

n = 500
True OR, 2.08

Power 0.804 0.807 0.779 0.809 0.794

MCSE (power) 0.006 0.006 0.038 0.006 0.006

Mean 2.08 2.11 2.11 2.08 2.08

MCSE (mean) 0.004 0.004 0.024 0.004 0.004

Convergence 100 100 2.44 100 100

Coverage 0.956 0.954 0.959 0.951 0.952

MCSE (coverage) 0.003 0.003 0.018 0.003 0.003

n = 1000
True OR, 1.71

Power 0.803 0.807 0.780 0.806 0.798

MCSE (power) 0.006 0.006 0.006 0.006 0.006

Mean 1.7 1.71 1.71 1.7 1.7

MCSE (mean) 0.003 0.003 0.003 0.003 0.003

Convergence 100 100 95.94 100 100

Coverage 0.950 0.949 0.949 0.947 0.949

MCSE (coverage) 0.003 0.003 0.003 0.003 0.003

n = 5000
True OR, 1.29

Power 0.793 0.795 0.783 0.799 0.788

MCSE (power) 0.006 0.006 0.006 0.006 0.006

Mean 1.28 1.28 1.28 1.28 1.28

MCSE (mean) 0.001 0.001 0.001 0.001 0.001

Convergence 100 100 100 100 100

Coverage 0.949 0.949 0.949 0.943 0.944

MCSE (coverage) 0.003 0.003 0.003 0.003 0.003

The average actual number of centers was 87, 99, 100, and 100
GEE generalized estimating equations, MH Mantel–Haenszel, RE random-effects (i.e., random intercept), MCSE Monte Carlo standard errors
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method fails to converge. Table 6 provides selected rec-
ommendations according to the number of centers.
In addition to the simulation study, we reanalyzed the

RCT that motivated this paper. The sparsity of the 80
events across the five study arms and 54 companies by
which randomization was stratified produced a setting
where the choice of analysis is very important in order
to avoid unnecessarily dropping many participants from
the analysis. We also encountered challenges with con-
vergence for some of the treatment contrasts when using
the Mantel–Haenszel model and the GEE-small sample
correction. The results for the center unadjusted, GEE,
and RE models were all similar. These results are likely
due to the very low ICC (0.005). Of note, the use of a
fixed-effects analysis would result in 1116 (18.6%) ran-
domized participants being excluded from the analysis.
Our study has limitations. First, we studied commonly

used methods, as we believe that recommendations
stemming from these comparisons will be most inform-
ative to a broad clinical and social science audience.
However, there are other potentially useful methods that
could be used, particularly Bayesian methods and Firth’s
correction. Readers interested in Bayesian options for
the analysis of multicenter trials with binary outcomes
are directed to the work by Pedroza and Truong [6]. In
their simulation study of model performance in studies



Table 5 Reanalysis of the motivating five-arm smoking cessation trial [3]

Study arma Randomized (n) 6-month
cessation
(n (%))

No adjustment Random
intercept

MH GEE GEE-small
sample
correction

Usual care 813 1 (0.1%) 0.12 (0.02 to 0.90) 0.12 (0.02 to 0.90) 0.14 (0.02 to 1.24) 0.14 (0.02 to 0.87) Model did
not converge

Free cessation aids 1587* 8 (0.5%) 0.51 (0.21 to 1.26) 0.51 (0.21 to 1.25) 1.95 (0.81 to 4.7) 0.53 (0.22 to 1.24)

Free e-cigarettes 1199 12 (1.0%) Reference Reference Reference Reference

Rewards plus free
cessation aids

1198 24 (2.0%) 2.02 (1.01 to 4.06) 2.02 (1.01 to 4.07) 2.05 (1.02 to 4.14) 1.96 (1.00 to 3.84)

Redeemable deposit
plus free cessation
aids

1207* 35 (2.9%) 2.95 (1.52 to 5.71) 2.97 (1.53 to 5.76) 2.96 (1.53 to 5.72) 2.84 (1.50 to 5.37)

Total 6004 (100%) 80 (1.3%) 6004 (100%) 6004 (100%) 552/2012 (27.44%)b

1025/2786 (36.79%)b

1497/2397 (62.45%)b

1701/2406 (70.70%)b

6004 (100%)

Results are reported as odds ratios and 95% confidence intervals unless otherwise specified. All models are additionally adjusted for study wave (first or second)
according to the primary analysis plan
GEE generalized estimating equations, MH Mantel–Haenszel, RE random-effects (i.e., random center intercept)
*A total of 6006 participants were randomized, though for 2 participants (n = 1 in each study arm with an asterisk) who did not meet the criteria for the primary
outcome, we did not have information on their employer
aDetails about the interventions examined in this smoking cessation trial are detailed in the primary trial report [3]
bBecause odds ratios were calculated by each study arm using the e-cigarettes group as the reference group, we have reported the total number for each analysis
to illustrate the dropout that occurred when using the Mantel–Haenszel approach
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with less than or equal to 30 centers and 50 or fewer partic-
ipants per center, they compared GEE log-binomial and
Poisson models, generalized linear mixed models (GLMMs)
assuming binomial and Poisson distributions, and a Bayes-
ian binomial GLMM with informative neutral priors. They
observed that all of the examined frequentist methods ex-
hibited little bias and a similar root mean squared error
(RMSE). They noted convergence issues with some models,
including the Bayesian binomial GLMM informative neu-
tral priors but found that this method had the smallest
RMSE and good coverage across all scenarios. Heinze and
Schemper [21] showed that Firth’s modification of the score
function was a tenable option in analyses of two different
clinical datasets. Agresti and Hartzel [4] also reviewed the
pros and cons of other strategies that researchers might
consider, such as combining low or no event centers.
Table 6 Selected recommendations for writing a statistical analysis
within a center or stratification variable

Number of centers RE MH

Small number of
centers (e.g., 5)

Recommended X
Low type I error a

Moderate or large
number of centers
(e.g., 50 to 100)

Recommended
(slightly biased odds
ratio with a small
total sample size
(e.g., 200))

X
Low type I error a
Convergence issu
the sample size is
(e.g., 200)

GEE generalized estimating equations, MH Mantel–Haenszel, RE random-effects (i.e.
X: We do not recommend this method
△: Consider other methods or use with caution
Second, we did not examine questions related to
treatment-by-center interaction. However, this topic has
also been reviewed by Agresti and Hartzel [4]. Third, we
simulated data from a random intercept model. Therefore,
it is likely that the results favor analysis using this model.
To conclude, we examined a range of hypothetical trial

settings where randomization was stratified by center, but
in certain centers, there were no outcome events overall
or in one study arm of the stratum. This simulation study
was motivated by our experience with a completed trial.
Accordingly, we provide selected recommendations for
the analysis of multicenter RCTs where randomization
has been stratified by center in Table 6. Our findings gen-
erally align with the suggestions and findings of prior work
regarding the analysis of multicenter RCTs where the pri-
mary outcome is binary [4–7]. Specifically, we found that
plan for a multicenter trial where sparse or no events may occur

GEE GEE-small
sample
correction

nd power
X
Inflated type I error

X
Nominal type I error,
but low power
Convergence issues

nd power
es when
small

△
Slightly inflated type I
error in some scenarios

Recommended

, random center intercept)
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random intercept models generally performed best across
most scenarios. GEE-small sample correction performed
well when the number of centers was large. We do not
recommend the use of Mantel–Haenszel, GEE, or models
that do not account for center. When the planned event
rate is low, we suggest that the statistical analysis plan spe-
cify an alternative method in the case of non-convergence
of the primary method. The issues demonstrated in this
article should highlight the care that is needed to ensure a
statistical analysis plan that is resilient to unanticipated
data distributions or unexpected non-convergence of stat-
istical models.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13063-020-04801-5.

Additional file 1: Table S1. Calculated true odds ratio when OR > 1.
Figure S1. Type I error rates for scenarios when then the number of
centers is 5, 50, and 100, the total patients are 200, 500, 1000, and 5000.
Figure S2. Power for scenarios when the number of centers is 5, 50, and
100, the total patients are 200, 500, 1000, and 5000. Figure S3. Estimated
mean treatment OR for scenarios when the true odds ratio is 1, the
number of centers is 5, 50, and 100, the total patients are 200, 500, 1000,
and 5000. Figure S4. Coverage of 95% CIs for scenarios when the true
odds ratio is 1, the number of centers is 5, 50, and 100, the total patients
are 200, 500, 1000, and 5000. Figure S5. Coverage of 95% CIs for
scenarios when the true odds ratio is greater than 1, the number of
centers is 5, 50, and 100, the total patients are 200, 500, 1000, and 5000.
Figure S6. Type I error rates for scenarios when then the number of
centers is 5, 50, and 100, the total patients are 200, 500, 1000, and 5000.
Figure S7. Power for scenarios when the number of centers is 5, 50, and
100, the total patients are 200, 500, 1000, and 5000. Figure S8. Estimated
mean treatment OR for scenarios when the true odds ratio is 1, the
number of centers is 5, 50, and 100, the total patients are 200, 500, 1000,
and 5000. Figure S9. Coverage of 95% CIs for scenarios when the true
odds ratio is 1, the number of centers is 5, 50, and 100, the total patients
are 200, 500, 1000, and 5000. Figure S10. Coverage of 95% CIs for
scenarios when the true odds ratio is greater than 1, the number of
centers is 5, 50, and 100, the total patients are 200, 500, 1000, and 5000.
Figure S11. Type I error rates for scenarios when then the number of
centers is 5, 50, and 100, the total patients are 200, 500, 1000, and 5000.
Figure S12. Power for scenarios when the number of centers is 5, 50,
and 100, the total patients are 200, 500, 1000, and 5000. Figure S13.
Estimated mean treatment OR for scenarios when the true odds ratio is
1, the number of centers is 5, 50, and 100, the total patients are 200, 500,
1000, and 5000. Figure S14. Coverage of 95% CIs for scenarios when the
true odds ratio is 1, the number of centers is 5, 50, and 100, the total
patients are 200, 500, 1000, and 5000. Figure S15. Coverage of 95% CIs
for scenarios when the true odds ratio is greater than 1, the number of
centers is 5, 50, and 100, the total patients are 200, 500, 1000, and 5000.

Acknowledgements
Not applicable

Authors’ contributions
JK conducted the simulations under the supervision of ABT, BCK, TPM, and
MOH. All authors contributed to the development of the analysis plan,
drafting and editing of the manuscript, and read and approved the final
manuscript.

Funding
This project was funded by the NIH/NHLBI (MOH was supported by K99
HL141678 and R00 HL141678; SDH was supported by K24 HL143289) and by
MRC Unit grants (TPM and BCK were supported by MC_UU_12023/21 and
MC_UU_12023/29). The funding bodies had no role in the design of the
study; collection, analysis, and interpretation of the data; or writing of the
manuscript.

Availability of data and materials
The datasets used and/or analyzed during the current study are available
from the corresponding author upon reasonable request.

Ethics approval and consent to participate
The protocol for the motivating trial that was reanalyzed in this manuscript
was approved by the institutional review board at the University of
Pennsylvania.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Division of Biostatistics, Department of Population Health, New York
University Grossman School of Medicine, New York, NY, USA. 2Palliative and
Advanced Illness Research (PAIR) Center, Department of Medicine, Perelman
School of Medicine, University of Pennsylvania, 304 Blockley Hall, 423
Guardian Drive, Philadelphia, PA 19104-6021, USA. 3Division of Pulmonary,
Allergy, and Critical Care, Department of Medicine, Perelman School of
Medicine, University of Pennsylvania, Philadelphia, PA, USA. 4Department of
Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine,
University of Pennsylvania, Philadelphia, PA, USA. 5Department of Medical
Ethics and Health Policy, Perelman School of Medicine, University of
Pennsylvania, Philadelphia, PA, USA. 6Center for Health Incentives and
Behavioral Economics, Perelman School of Medicine, University of
Pennsylvania, Philadelphia, PA, USA. 7Philadelphia VA Medical Center,
Philadelphia, PA, USA. 8Department of Health Care Management, Wharton
School, University of Pennsylvania, Philadelphia, PA, USA. 9MRC Clinical Trials
Unit at UCL, London, UK. 10Department of Medical Statistics, London School
of Hygiene and Tropical Medicine, London, UK.

Received: 29 January 2020 Accepted: 10 October 2020

References
1. Parzen M, Lipsitz SR, Dear KB. Does clustering affect the usual test

statistics of no treatment effect in a randomized clinical trial? Biom J.
1998;40(4):385–402.

2. Kahan BC, Morris TP. Improper analysis of trials randomised using stratified
blocks or minimisation. Stat Med. 2012;31(4):328–40. https://doi.org/10.1002/
sim.4431.

3. Halpern SD, Harhay MO, Saulsgiver K, Brophy C, Troxel AB, Volpp KG. A
pragmatic trial of e-cigarettes, incentives, and drugs for smoking cessation.
N Engl J Med. 2018;378(24):2302–10. https://doi.org/10.1056/
NEJMsa1715757.

4. Agresti A, Hartzel J. Strategies for comparing treatments on a binary
response with multi-centre data. Stat Med. 2000;19(8):1115–39.

5. Kahan BC. Accounting for centre-effects in multicentre trials with a binary
outcome - when, why, and how? BMC Med Res Methodol. 2014;14:20.
https://doi.org/10.1186/1471-2288-14-20.

6. Pedroza C, Truong VTT. Estimating relative risks in multicenter studies with a
small number of centers - which methods to use? A simulation study. Trials.
2017;18(1):512. https://doi.org/10.1186/s13063-017-2248-1.

7. Pedroza C, Thanh Truong VT. Performance of models for estimating
absolute risk difference in multicenter trials with binary outcome. BMC Med
Res Methodol. 2016;16(1):113. https://doi.org/10.1186/s12874-016-0217-0.

8. Hauck WW, Anderson S, Marcus SM. Should we adjust for covariates in
nonlinear regression analyses of randomized trials? Control Clin Trials. 1998;
19(3):249–56.

9. Robinson LD, Jewell NP. Some surprising results about covariate adjustment
in logistic regression models. Int Stat Rev. 1991;59(2):227–40. https://doi.org/
10.2307/1403444.

10. Liang K-Y, Zeger SL. Longitudinal data analysis using generalized linear
models. Biometrika. 1986;73(1):13–22.

https://doi.org/10.1186/s13063-020-04801-5
https://doi.org/10.1186/s13063-020-04801-5
https://doi.org/10.1002/sim.4431
https://doi.org/10.1002/sim.4431
https://doi.org/10.1056/NEJMsa1715757
https://doi.org/10.1056/NEJMsa1715757
https://doi.org/10.1186/1471-2288-14-20
https://doi.org/10.1186/s13063-017-2248-1
https://doi.org/10.1186/s12874-016-0217-0
https://doi.org/10.2307/1403444
https://doi.org/10.2307/1403444


Kim et al. Trials          (2020) 21:917 Page 14 of 14
11. Mancl LA, DeRouen TA. A covariance estimator for GEE with improved
small-sample properties. Biometrics. 2001;57(1):126–34.

12. Kahan BC, Forbes G, Ali Y, Jairath V, Bremner S, Harhay MO, Hooper R,
Wright N, Eldridge SM, Leyrat C. Increased risk of type I errors in cluster
randomised trials with small or medium numbers of clusters: a review,
reanalysis, and simulation study. Trials. 2016;17(1):438. https://doi.org/10.
1186/s13063-016-1571-2.

13. Li P, Redden DT. Small sample performance of bias-corrected sandwich
estimators for cluster-randomized trials with binary outcomes. Stat Med.
2015;34(2):281–96. https://doi.org/10.1002/sim.6344.

14. Fay MP, Graubard BI. Small-sample adjustments for Wald-type tests using
sandwich estimators. Biometrics. 2001;57(4):1198–206.

15. R Development Core Team. R: a language and environment for statistical
computing. Vienna, Austria: R Foundation for Statistical Computing; 2019.
http://www.R-project.org/.

16. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models
using lme4. 2015, 2015;67(1):48. https://doi.org/10.18637/jss.v067.i01.

17. Halekoh U, Højsgaard S, Yan J. The R package geepack for generalized
estimating equations. J Stat Softw. 2006;15(2):1–11.

18. Fitzmaurice GM, Laird NM, Ware JH. Applied longitudinal analysis, vol. 998.
Hoboken: John Wiley & Sons; 2012.

19. Morris TP, White IR, Crowther MJ. Using simulation studies to evaluate
statistical methods. Stat Med. 2019;38(11):2074–102. https://doi.org/10.1002/
sim.8086.

20. Gallis JA, Li F, Turner EL. XTGEEBCV: Stata module to compute bias-
corrected (small-sample) standard errors for generalized estimating
equations; 2019.

21. Heinze G, Schemper M. A solution to the problem of separation in logistic
regression. Stat Med. 2002;21(16):2409–19. https://doi.org/10.1002/sim.1047.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1186/s13063-016-1571-2
https://doi.org/10.1186/s13063-016-1571-2
https://doi.org/10.1002/sim.6344
http://www.r-project.org/
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1002/sim.8086
https://doi.org/10.1002/sim.8086
https://doi.org/10.1002/sim.1047

	Abstract
	Introduction
	Methods
	Results
	Discussion

	Introduction
	Methods
	Center-unadjusted logistic regression model
	Center adjusted models
	Conditional models
	Marginal models

	Simulation study
	Methods of analysis
	Data-generating mechanism
	Estimand
	Performance measures

	Reanalysis of the motivating trial

	Results
	Computational issues
	Simulation study
	Reanalysis of the motivating smoking-cessation trial

	Discussion
	Supplementary information
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

