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Abstract

Background: Many technology companies, including Airbnb, Amazon, Booking.com, eBay, Facebook, Google,
LinkedIn, Lyft, Microsoft, Netflix, Twitter, Uber, and Yahoo!/Oath, run online randomized controlled experiments at
scale, namely hundreds of concurrent controlled experiments on millions of users each, commonly referred to as A/
B tests. Originally derived from the same statistical roots, randomized controlled trials (RCTs) in medicine are now
criticized for being expensive and difficult, while in technology, the marginal cost of such experiments is
approaching zero and the value for data-driven decision-making is broadly recognized.

Methods and results: This is an overview of key scaling lessons learned in the technology field. They include (1) a
focus on metrics, an overall evaluation criterion and thousands of metrics for insights and debugging, automatically
computed for every experiment; (2) quick release cycles with automated ramp-up and shut-down that afford agile
and safe experimentation, leading to consistent incremental progress over time; and (3) a culture of ‘test
everything’ because most ideas fail and tiny changes sometimes show surprising outcomes worth millions of
dollars annually.
Technological advances, online interactions, and the availability of large-scale data allowed technology companies
to take the science of RCTs and use them as online randomized controlled experiments at large scale with
hundreds of such concurrent experiments running on any given day on a wide range of software products, be they
web sites, mobile applications, or desktop applications. Rather than hindering innovation, these experiments
enabled accelerated innovation with clear improvements to key metrics, including user experience and revenue. As
healthcare increases interactions with patients utilizing these modern channels of web sites and digital health
applications, many of the lessons apply. The most innovative technological field has recognized that systematic
series of randomized trials with numerous failures of the most promising ideas leads to sustainable improvement.

Conclusion: While there are many differences between technology and medicine, it is worth considering whether
and how similar designs can be applied via simple RCTs that focus on healthcare decision-making or service
delivery. Changes – small and large – should undergo continuous and repeated evaluations in randomized trials
and learning from their results will enable accelerated healthcare improvements.
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Background
Every major technology company runs online con-
trolled experiments, often called A/B tests, to gather
trustworthy data and make data-driven decisions
about how to improve their products. All these con-
trolled experiments are randomized. Companies that
make widespread use of this approach include Micro-
soft [1–3], Google [4, 5], LinkedIn [6–8], Facebook
[9], Amazon [10] and Intuit [11]. Much of the meth-
odology used in these online controlled experiments
derives from the same family of experimental methods
developed in the earlier part of the twentieth century
that led to randomized controlled trials (RCT) in
medicine [12]. The scale of online controlled experi-
ments has grown dramatically in the last decade, as
marginal costs approach zero. In this paper, we share
some insights about the evolution and use of A/B tests
and derive some key lessons that may be useful for
medicine.
It may be possible to translate some of the advan-

tages of online controlled experiments to medicine
and invigorate the traditional RCT designs and their
applications. In particular, RCTs in medicine are often
criticized for being expensive, requiring longer follow-
up to obtain reliable answers, and difficult to do. This
criticism draws mostly on the paradigm of licensing
trials for new medications and biologics, typically
done in strictly controlled settings under very specific
circumstances. However, a very large number of ques-
tions in medicine, health, and healthcare could poten-
tially be answered with simple RCTs at significantly
lower cost. Such trials are conducted in a pragmatic
fashion and directly address issues of decision-
making, such as whether to do or not to do some
procedure, test, intervention, information offering,
quality improvement, service delivery [13], or manage-
ment or policy change. They aim to directly compare
the effects of choosing option A or option B and
outcomes can be collected routinely, for example,
obtained from interactions with web sites, mobile ap-
plications, and desktop applications, wearable devices
or electronic health records, or from reimbursement
claims or financial datasets. There are ongoing initia-
tives aiming to improve the design and affordability
of trials or the use of routinely collected data for
RCTs [14–16]. Some outcomes may be possible to
meaningfully collect very quickly, for example, rehos-
pitalization rates, which is increasingly possible using
routinely collected data from electronic health re-
cords, administrative data, or registries [13, 16]. In
this regard, it would be very useful to learn from the
A/B testing experience in technology and allow the
medical and healthcare research community to con-
sider whether and how similar designs can be applied

in a focused fashion or at massive scale in biomedi-
cine as well.

The test everything with controlled experiments theme
In the digital world, data is generated and collected at
an explosive rate. More than 4 billion of the world’s
7.6 billion population is connected to the internet.
The volume and frequency of data production are
enormous. For example, Google receives billions of
queries every day [17], and along with these queries,
terabytes of telemetry data are logged to improve the
service. Over the years, technology has also been de-
veloped not only to be able to handle the volume and
frequency of the data flowing around but also the
transfer speed, reliability and security of data. Digital
collection of data has become much cheaper and
reliable.
At Google, LinkedIn, and Microsoft, where three of

the co-authors work, the value of online controlled ex-
periments became clear – tiny changes had surprisingly
large impact on key metrics, while big expensive pro-
jects often failed. About two-thirds of experiments
show that promising ideas that we implemented in
products failed to improve the metrics they were de-
signed to change, and this was worse in well-optimized
domains such as the search engines [2], where failures
were in the range of 80–90%. The humbling results led
to a theme of ‘test everything with controlled experi-
ments’ coupled with the idea of testing Minimum
Viable Products popularized by Eric Ries in the Lean
Startup [18] – the sooner we can get ideas into con-
trolled experiments and thus get objective data, the
sooner we can learn and adjust. A motivating example
is described in Table 1.
Figure 1 shows how the different organizations scaled

experimentation over the years with year 1 being a year
where experimentation scaled to over an experiment
per day (over 365/year). The graph shows an order of
magnitude growth over the next 4 years for Bing, Goo-
gle, and LinkedIn. In the early years, growth was slowed
by the experimentation platform capabilities itself. In
the case of Microsoft Office, which just started to use
controlled experiments as a safe deployment mechan-
ism for feature rollouts at scale in 2017, the platform
was not a limiting factor because of its prior use in
Bing, and feature rollouts, run as controlled experi-
ments, grew by over 600% in 2018. Growth slows down
when the organization reaches a culture of ‘test every-
thing’ and the limiting factor becomes its ability to con-
vert ideas into code that can be deployed in controlled
experiments.
Today, Google, LinkedIn, and Microsoft are at a run

rate of over 20,000 controlled experiments/year, al-
though counting methodologies differ (e.g., ramping up
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the exposure from 1% of users to 5% to 10% can be
counted as one or three experiments; an experiment
consisting of a control plus two treatments can count
as either one or two experiments).

Phases of technical and cultural change
Software development organizations that start to use con-
trolled experiments typically go through phases of tech-
nical and cultural changes as they scale experimentation.

Here are key axes on which this evolution at Google,
LinkedIn, and Microsoft happened.

Scale and statistical power
Firstly, to scale experimentation, the experimentation
platform must support the capability of exposing a single
user to multiple experiments. Whether the experimenta-
tion surface (web site, mobile app, desktop app) has 10,
000 monthly active users or 100 million (as Bing, Goo-
gle, and LinkedIn have), there are never enough users if
each user is exposed to just a single experiment. Web
sites (like Bing and Google) with multibillion-dollar an-
nual revenues that depend on a single key web page
(e.g., the search engine results page, or SERP) imply that
we must be able to detect small effects – not detecting a
true 0.5% relative degradation to revenue will cost tens
of millions of dollars. In the medical literature, looking
for such effects would be equivalent to looking for risk
ratios of 1.005 or less, which is one order of magnitude
lower than the threshold of what are considered ‘tiny ef-
fects’ (relative risks < 1.05) [21]. However, this may be
very different on a public health level. Here, on a large
scale, the impact of tiny effects can be substantial. For
example, the effect of fruits and vegetables may be tiny
per serving on reducing cancer risk individually (with a
HR of 0.999) but substantial at a population level [21].
High statistical power is required, and the way to

achieve this is to expose each user to multiple experi-
ments. Because the relationship between the detectable
effect and the number of users needed is quadratic [22],
the ability to detect an effect twice as small, e.g., 0.25%,
requires quadrupling the number of users. For Bing,
Google, and LinkedIn, it is common for each experiment
to be exposed to over a million users.
If the results are surprising, such as a much larger ef-

fect being seen than expected, then the experiment will

Fig. 1 Experimentation growth over the years since experimentation operated at scale of over one new experiment per day

Table 1 Example: optimizing after-visit summaries

In the online space, we learned that small changes ranging from
making the website faster to changing font colors can meaningfully
affect how a user interacts with a product or service, dramatically
impacting key metrics, including revenue [3, 19].

In medicine, with the increasing use of electronic health records,
after-visit summaries (AVS) are increasingly used, providing patients with
relevant and actionable information similar to traditional patient
handouts with a goal of increasing patient compliance and
understanding.

Given that goal:

• What channel should the AVS use (e.g., paper letter, email, mobile
notification) to increase patient engagement?

• When should the summary be sent? Is there a time of day or day of
week (e.g., Friday) when the patient is more likely to engage with the
AVS?

• What text in the message might motivate patients to follow the link?
Can we test how to reduce the friction of getting a user to sign-in and
view the AVS once they click on a link? How can we reduce the steps
required to see the summary?

• In the AVS summary itself, how is the information presented? Do some
layouts improve engagement? Should we present checklists?
Reminders? Offer tools (e.g., mobile apps) that can help compliance?

• There is an increasing focus on the importance of social determinants
of health outcomes, so what can we do in terms of sharing the visit
summaries with caretakers, be it family members or friends?

Similar types of questions can be applied in the medical system, and
these are exactly the types of questions that online controlled
experiments are designed and already used for [20].
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typically be rerun with tens of millions of users to gain
confidence in the results. Both the act of replication and
the increased power are important factors in increased
trust in the results.
All three companies started with a simple system run-

ning experiments on disjoint users, and all switched to
concurrent, or overlapping, experiments [2, 4, 7]. A user
visiting Bing, Google, or LinkedIn today is exposed to
tens of experiments, which may change the user inter-
face, personalization, ranking algorithms, and infrastruc-
ture (e.g., improving site speed).
To ensure robustness given the high level of concur-

rency, mechanisms were developed to prevent interac-
tions (e.g., by declaring constraints or parameters being
modified, the system will guarantee disjoint users to
those experiments) and nightly tests are sometimes run,
which test all pairs of experiments for interactions. A
classic example of an interaction has two different ex-
periment treatments wherein each adds a line that
pushes the buy button at a retail site down. A user in
both treatments experiences a buy button pushed below
the ‘fold’ (bottom of screen) and thus add-to-carts drop.
In our experience, unexpected interactions in technology
are rare and these are addressed by serializing the exper-
iments or, more commonly, by identifying and fixing
software issues that show up when users are exposed to
multiple experiments.

Incremental costs
Secondly, the cost (developer time, data scientist time,
hardware resources) of setting up and analyzing experi-
ments is initially high but comes down with scale. As
the experimentation platform matures, running and ana-
lyzing experiments becomes self-service. For instance, at
Google, LinkedIn, and Microsoft, developers, data scien-
tists and product/program managers set up experiments
using a browser interface; over 1000 metrics are then
computed for each experiment, ranging from various
engagement metrics (e.g., pageviews and clicks) to
monetization (e.g., revenue and subscription rates) to
service metrics (e.g., queries-per-second, latency, and
crash rates). It is common that after an experiment is
activated, one can get the first read on the experiment
impact in minutes for critical metrics. Such near-real-
time data pipelines are used to abort egregiously bad
experiments or for supporting an experiment to be
ramped up from a small percentage of users to a larger
one.
Data scientists with statistics and coding background

(able to manipulate large amounts of data) are involved
in only a small percentage of experiments (e.g., under
5%), where special experiment designs are needed or a
deep-dive analysis is required (e.g., two metrics that are
normally highly correlated move in opposite directions).

As another example of a surprisingly hard problem,
some clicks are caused by bots – automated programs
that scrape the web site – and should be removed from
the analysis as they introduce non-human signals that
could skew results or reduce statistical power. At Bing,
over 50% of US web traffic is due to bots and the pro-
portion is about 90% in China and Russia; fairly sophisti-
cated mechanisms have been developed to detect bots
and remove them.

Culture change
Thirdly, when the experimentation platform is no longer
limiting the number of experiments (neither technically
nor due to costs), the culture changes to the abovemen-
tioned ‘test everything with controlled experiments’
mentality. The limiting factor to innovation now be-
comes the ability to generate ideas and develop the code
for them. Software development cycles shrink to enable
quick iterations and feedback loops based on the idea of
the Minimum Viable Product [18], which means that
you build just enough of an idea so that it can test be
tested in a controlled experiment and then get feedback
and iterate. The key observation is that long develop-
ment cycles based on the traditional waterfall model
often fail to meet their goals due to optimistic assump-
tions and changing requirements; to paraphrase
Helmuth von Moltke, ideas rarely survive contact with
customers. Instead, we want to test an idea quickly with
real users in a controlled experiment and learn from the
results and feedback (mostly implicit, but sometimes
explicit through feedback links and survey). Several
changes typically happen, as follows:

1. Release frequency (tempo) improves. Increasing
the frequency of software developments with
controlled experiments improves the stability and
reliability of software because small changes that
are evaluated in isolation allow quick corrections
before major maldevelopments have big
consequences (e.g., rollbacks) [23, 24]. Release
cycles went from 6months to monthly to weekly to
daily, and now at Bing, Google, and LinkedIn, they
are made multiple times a day to services and web
sites. Experiments on client software, like Microsoft
Office, is still limited because, unlike a website, it
requires users to update the software on their
machines (e.g., PCs or phones). That said, even for
client software, release cycles have shrunk from
years to weeks, with each release containing
hundreds of new features evaluated using controlled
experiments.

2. Agreement on the Overall Evaluation Criterion
(OEC) becomes critically important. An
experiment scorecard shows hundreds to thousands
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of metrics. It is usually easy to find something that
improves (or degrades), but the challenge is to
come up with a small set of key metrics, ideally a
single OEC, to help make tradeoffs. A good OEC
captures the organizational long-term objectives but
must be based on metrics that are measurable in
short-term experiments. Since the OEC is used to
determine success (e.g., shipping a change) and
consists of one or a few metrics, there is less
concern about multiple hypothesis testing. One
example of a key component of the OEC is the
sessions per user metric [25]; if users are coming
more often, it is usually a strong sign that the
treatment is useful. The rest of the metrics are used
for debugging and understanding why something
happened, and these are marked as interesting when
the p value is low, e.g., < 0.001.
The reason we can look at so many metrics is that
key metrics are broken down by areas. For example,
we might be interested in the click-through rate of
the page (single metric); to understand the change
in this metric, we will show the click-through rate
of 20 subareas of the page. In many cases we find
that users often have a fixed amount of attention,
so there is a conservation of clicks: if one sub-area
gets more clicks, it is likely cannibalizing clicks from
other sub-areas. In medicine, the issue of competing
risks, concurring events, and their capture in
combined endpoints integrating the competing
components might be the closer analogy to
cannibalization of outcomes [26, 27]. Selecting a
useful primary outcome(s) is key but not
straightforward. Core outcome sets are increasingly
developed with input from patients and clinicians to
reflect outcomes that cover the long-term objectives
of treatment such as the prevention of death,
disability, or loss of quality of life [28]. Combined
endpoints may integrate several components that
may occasionally be competing risks. With a
plethora of outcomes, concerns arise about
multiplicity [29].

3. Humbling reality sets in on the value of ideas.
Goals change from ‘ship feature X by date Y’ to
‘improve the OEC by x% over the next year’.
Success becomes harder and a humbling reality sets
in – most ideas are not as good as we believe [19].
High attrition is similarly common in the
development pipeline of medical interventions [30].
Moreover, while many of the more successfully
licensed interventions originally have expectations
of major benefits, e.g., in survival, most often they
settle for improvements in less serious outcomes,
e.g., disease progression, without affecting death
rates [31].

4. Evaluation encourages more exploration –
breakthrough ideas are discovered. The safety
net afforded by controlled experiments encourages
more exploration of ideas that may not be highly
prioritized a priori but are easy to code and
evaluate. Our experience is that there is no strong
correlation between the effort to code an idea and
its value. For example, a simple change to ad titles
at Bing, which was rated low and took days to code,
was worth over $100M annually [3]. Tweaks to
Google’s color scheme, which were shunned by
Google’s visual design lead at the time, because he
had “grown tired of debating such minuscule design
decisions” [32] were worth over $200M annually
[33]. In the same way, some medical treatments
may have tremendous health effects and are
incredibly cheap (e.g., simple diagnostics such as
measurement of blood pressure, body temperature
or listening to the patient and interventions such as
beta-blockers for antihypertensive treatment or
antibiotics in sepsis), while high tech interventions
that are extremely costly often provide relatively
little health gain (e.g., modern oncology treatments
[31, 34]).

5. Incremental progress on long-term goals. Many
long-term improvements are the result of thousands
of candidate ideas that are evaluated over multiple
iterations. Winners are shipped, losers are modified
(given new data and insights from the experiment)
or abandoned. It is impressive to see how key
metrics have improved over time. This would be
the ultimate goal of a learning healthcare system in
medicine, where A/B testing might play a crucial
role in the continuous evaluation of innovative
changes of care [20].

Evolution of organizational processes: experimentation
maturity on multiple axes
As experimentation matures in an organization [35], the
organizational needs evolve, including:

1. Early indicators and holdout. While there are
metrics that take longer to materialize, such as the
retention rate of a paid customer, the desire to
iterate quickly usually pushes one to look for early
indicators that are then combined with a holdout
experiment to see if the long-term metrics differ.
Therefore, time to measure is usually a week or a
few weeks. For example, a site may give customers
a free subscription service trial, and they have 30
days to decide whether they want to subscribe. The
customer’s usage and satisfaction of the service
during the first few days can be very indicative of
whether they will end up paying. In the medical
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field, such early indicators would be metrics like
duration of hospital stay, hospital mortality,
complications or 30-day re-admission rates, for
example, in clinical trials evaluating different types
of surgery.

2. Near-real-time analysis. Whereas the initial
experimentation system usually produces a
scorecard after a day, as reliance on
experimentation grows, so does the need for faster
scorecards. If there is a bug, a day is too long – too
many users are hurt and the development team
needs faster feedback. Today, initial scorecards are
produced in near-real-time (e.g., every 15 min).
While they do not have statistical power to detect
the effect we are hoping for, they are sufficient for
detecting egregious issues, allowing the platform to
abort experiments. Note that, given the large
number of scorecards generated, multiple
hypothesis issues have to be addressed [2]. The final
treatment effect is determined by the final
scorecard, usually based on 1–2 weeks of data.

3. Automated ramp-up. With near-real-time analysis,
it is possible to tradeoff risk versus statistical power.
An experiment starts at a small percentage in a
single data center, similar to pilot studies in
medicine. As discussed above, scorecards are
generated in near-real-time and, if certain metrics
degrade beyond acceptable limits, the experiment is
auto-aborted without the need for human interven-
tion. If after several hours no key metric degrades,
the experiment auto-ramps to a higher percentage
of users and at multiple data centers.

4. Heterogeneous treatment effects are provided in
scorecards. Rather than focus just on the average
treatment effect, the scorecard also highlights
interesting segments, where the treatment effect is
different than the average. For example, a browser
version (say Internet Explorer 8) may behave
differently, leading to a discovery that JavaScript
code failed in that setting; in other cases, low
performance in a country or market may be due to
poorly localized text. The key is that hypotheses
develop and experiments start to target segments of
users. In contrast to typically underpowered
subgroup analyses in medical clinical trials, these
experiments are highly powered with enough users
that the segments are big enough for reliable
statistical analyses.

5. Trustworthiness. With so many experiments
running, there is an obvious concern for lack of
trustworthiness and false positive results. We
exercise multiple tests to identify scenarios that
would indicate a problem [36] such as, for instance,
skewed assignments. For example, suppose the

experiment design calls for equal assignment to
control treatment and that the actual number of
control users is 821,588 and of treatment users is
815,482, and thus the ratio is 50.2% instead of 50%.
The system would flag this as a sample-ratio-
mismatch and declare the experiment result invalid,
as the p value for such a split is 1.8x10–6. For
dealing with multiple hypothesis testing problems,
we replicate experiments. In areas like search
relevance, teams are measured on the sum of treat-
ment effects of a single key metric and, because
many experiments are run, once a positive result is
found, it is rerun, and the replication run
determines the actual credit the team gets. The
replication effect is unbiased, while the first run
may have found an exaggerated effect [37].

6. Institutional memory. With tens of thousands of
experiments run every year, it is important to
highlight surprising results (both failures and
successes). Some are published in conferences [19]
or websites [38], but internal presentations and
documents are important for cross-pollination.

A summary of the lessons for medicine learned in the
technology field is given in Table 2.

Similarities and dissimilarities with medical RCTs
Given their large sample sizes and scale, large scale A/B
tests in technology allow addressing some additional de-
sign implementation issues that would have been diffi-
cult to address in traditional medical RCTs, which have
rarely very large sample sizes to date. Some interesting
topics are covered in Table 3. Several of the features of

Table 2 Lessons learned

• The philosophy of ‘test everything with controlled experiments’, i.e.,
the consistent and systematic implementation and integration of
evaluation into the entire development and application of treatments
and innovations is equivalent to the philosophy of ‘randomize the first
patient’ principle in medicine, that was introduced more than 40 years
ago. However, this has met much more resistance in medicine

• Technological advances and the availability of large-scale data makes it
tempting to abandon randomized trials, while randomization is pre
cisely what has turned out to be so useful for the most successful
technology companies

• Rather than hindering innovation, randomized trials fostered
improvements to products and revenue

• The most innovative technological field has recognized that systematic
series of randomized trials with numerous failures of the most
promising ideas leads to sustainable improvement

• Various parallels exist in the application of randomization, including
the importance of selecting the best evaluation criterions (outcome
measures)

• Even tiny changes should ideally undergo continuous and repeated
evaluations in randomized trials and learning from their results may be
indispensable also for healthcare improvement
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A/B experiments discussed above can be adopted in
RCTs in medicine and do not necessarily require a very
large scale; the principles described here are already used
in healthcare, although rarely. For example, Horwitz
et al. describe a “rapid-cycle randomized testing” system
that has been established in NYU Langone Health in the
US and allowed to complete 10 randomized A/B tests,
involving several hundred to several thousands of pa-
tients, within 1 year, with annual costs of $350,000 [20].
By testing various interventions that are introduced in
routine care every day in many places in the world, and
typically without randomized evaluation, they were able
to determine what really works and systematically im-
proved healthcare in their hospital: “We now know with
confidence that changing the text of a provider-targeted
prompt to give tobacco cessation counseling in an office
produces a significant increase in rates of medication

prescriptions and that changing just a few sentences in
telephone outreach scripts can both shorten telephone
calls and increase rates of appointments for annual
examinations. We have also learned that our post-
discharge telephone calls have made no difference in
rates of readmission or patient-experience ratings, that
our appointment-reminder letters were completely
ineffective, and that our community health worker
program was inadvertently targeting patients who were
unlikely to benefit” [20].
The most desirable features of A/B experiments are

their large-scale and low cost, which are commensurate
with the tradition of large simple trials [42] and the
emerging interest in pragmatic trials [43, 44]. Lower
costs would allow to test more and other interventions
and provide better evidence on thus far understudied
healthcare questions [13, 16]. Online administration is
also commensurate with the emerging efforts to perform
point-of-care randomization [45]. The principles of
ongoing, routine data collection for outcomes has paral-
lelisms to the concept of using routinely collected data,
e.g., from electronic health records, to fuel RCT datasets
with proper outcomes [46].
There is less emphasis in medical RCTs on performing

multiple RCTs at the same time and engaging the same
participants in multiple concurrent RCTs. However, be-
sides the traditional factorial designs [47], there is some
literature, especially on lifestyle, about performing mul-
tiple concurrent parallel randomizations [48].
A major difference between A/B testing in technology

and medical RCTs is their time horizon. Many RCTs in
biomedicine would require longer follow-up, often much
longer than that afforded by technology A/B trials. How-
ever, if a data collection system is in place (e.g.,
electronic health records), such data collection may be
automated and real-time assembly of data would be feas-
ible. Moreover, in acute medical treatment settings,
there are many patient-relevant and economically
important outcomes that can be collected in the short
time frame, such as duration of hospital stay, admission
to intensive care or re-admission rates.
Ethical implications are different between the technol-

ogy field and medicine. There is a push towards having
more trials that are simple and which compare usual
care modifications that are already implemented some-
where or would be implemented anyway without ethical
approval [49]. The evaluation of minor usual care modi-
fications may be seen more as quality improvement than
research [50] and using randomization alone may not
necessarily define an evaluation as research [20].
Finally, the A/B concept may be particularly attractive

for healthcare services, management, and improvement
interventions, where most of the current research per-
tains to non-randomized before–after studies and

Table 3 Methodological issues that can be overcome in online
experiments to date, difficult in traditional medical RCTs, but
potentially relevant in future large-scale medical RCTs

There are usually many quality checks that are feasible in the online
space with large-sample A/B tests. Here are a few examples:

• Checks on randomization: If the experiment design is for a ratio of
one-to-one (equally sized control and treatment) then deviations in
the actual ratio of users in an experiment likely indicate a problem.
With large numbers, a ratio smaller than 0.99 or larger than 1.01 for a
design that called for 1.0 likely indicates a serious issue. This simple
test has identified numerous issues in experiments, many of which
looked either great or terrible initially and invoked Twyman’s law (“Any
figure that looks interesting or different is usually wrong”) for us [39].

• Bias assessment with A/A tests: A/A test is the same as an A/B test,
but the treatment and control users receive identical experience (the
same UI, or the same ranking algorithms etc.), thus differences
measured by the experimental procedures reflect chance or bias.
Because the null hypothesis is true by design in A/A tests, statistically
significant differences for each metric should happen at about 5%
when using a p value cutoff of 0.05. We can run a large number of
A/A tests easily, and a higher or lower A/A failure rate for metrics
would happen when the normality or independent and i.i.d.
assumptions (i.e. independent and identically distributed data)
are violated. A/A tests are also used to ensure reasonable balance
between treatment and control users. They can be very effective at
identifying biases, especially those introduced at the platform level.
For example, we can use A/A tests to identify carry-over effect (or
residual effect), where previous experiments would impact
subsequent experiments run on the same users [25].

• Re-randomization or post-experiment adjustment. Randomization,
while it is a great technique to remove confounding factors, is not the
most efficient at times. For example, we may have more engaged
users in treatment than in control just by chance. While stratification is
a common technique used to improve balance across strata, it can be
expensive to implement efficiently during the sampling phase. One
effective approach is to check the balance of key metrics using
historical data and then re-randomize using a different hash ID if the
difference between the treatment and the control is too large. For
instance, Microsoft has created a ‘seed finder’ that can try hundreds of
seeds for the hash function to see which one leads to a difference that
is not statistically significant [25]. Another approach is to apply
adjustment during the analysis phase, using post-stratification or
CUPED [40]. Netflix [41] has a nice comparison paper on some of
these approaches.
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interrupted time series. Essentially, each digital inter-
action, use of diagnostic software or algorithm, or elec-
tronic decision aid could and maybe should be evaluated
and optimized in a randomized experiment.

Summary and discussion
Randomization is recognized as a powerful tool that
technology companies successfully use at extremely large
scale to improve their products and increase revenue.
Not only the origins of the methods are similar in the
technology world and the medical field, there are also
many parallels in possible applications. However, the
consistent and systematic implementation and integra-
tion into the entire development and application cycles
have no such parallel in the biomedical world. The de-
velopment and ongoing evaluation of new interventions
as well as the many interfaces between users and pro-
viders of healthcare are far from optimal. There is sub-
stantial potential to improve health if these can be
optimized.
Recently, criticism of randomized trials in medicine

seems to be growing. Technological advances and the
availability of large-scale data makes it tempting to aban-
don randomization, while randomization is precisely
what has turned out to be so useful for the most suc-
cessful technology companies. The technology world has
demonstrated, on several occasions, that promising ideas
in the vast majority of cases do not prove useful once
they have been tested in online controlled experiments.
While this has repeatedly been shown also for various
cases in the medical world and various estimates of the
extent of the problem exist, technology companies can
objectively measure the failure rate and directly assess
the true value of randomization. When most of the
promising, plausible changes of practice turned out to
be wrong, and even tiny changes of usual practice had
substantial impact on key outcomes, a philosophy of ‘test
everything with controlled experiments’ was established.
Rather than hindering innovation; it fostered improve-
ments to products and revenue.
Perhaps this is the most important lesson to be

learned by the medical world. The most innovative
technological field has recognized that systematic series
of randomized experiments with numerous failures leads
to sustainable improvement of the products. Even tiny
changes should ideally undergo continuous and repeated
evaluations in randomized experiments and learning
from their results may be indispensable also for health-
care improvement.
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