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Abstract 

Background  Phase-3 clinical trials provide the highest level of evidence on drug safety and effectiveness needed 
for market approval by implementing large randomized controlled trials (RCTs). However, 30–40% of these trials fail 
mainly because such studies have inadequate sample sizes, stemming from the inability to obtain accurate initial 
estimates of average treatment effect parameters.

Methods  To remove this obstacle from the drug development cycle, we present a new algorithm called Trend-
Adaptive Design with a Synthetic-Intervention-Based Estimator (TAD-SIE) that powers a parallel-group trial, a standard 
RCT design, by leveraging a state-of-the-art hypothesis testing strategy and a novel trend-adaptive design (TAD). 
Specifically, TAD-SIE uses synthetic intervention (SI) to estimate individual treatment effects and thereby simulate 
a cross-over design, which makes it easier for a trial to reach target power within trial constraints (e.g., sample size 
limits). To estimate sample sizes, TAD-SIE implements a new TAD tailored to SI given that using it violates assumptions 
under standard TADs. In addition, our TAD overcomes the ineffectiveness of standard TADs by allowing sample sizes 
to be increased across iterations without any condition while controlling significance level with futility stopping. Our 
TAD also introduces a hyperparameter that enables trial designers to trade off between accuracy and efficiency (sam-
ple size and number of iterations) of the solution.

Results  On a real-world Phase-3 clinical RCT (i.e., a two-arm parallel-group superiority trial with an equal number 
of subjects per arm), TAD-SIE obtains operating points ranging between 63% to 84% power and 3% to 6% significance 
level in contrast to baseline algorithms that get at best 49% power and 6% significance level.

Conclusion  TAD-SIE is a superior TAD that can be used to reach typical target operating points but only for trials 
with rapidly measurable primary outcomes due to its sequential nature. The framework is useful to practitioners inter-
ested in leveraging the SI algorithm for their study design.

Keywords  Adaptive design, Clinical randomized controlled trials, Counterfactual estimation, Crossover design, 
Sample size estimation, Synthetic intervention

Introduction
The randomized controlled trial (RCT) is the gold-
standard approach for establishing treatment effects 
in phase-3 trials, which in practice requires hundreds 
to thousands of subjects [1, 2]. Despite phase-3 trials 
accounting for 60% of R&D investment for clinical trials 

*Correspondence:
Sayeri Lala
slala@princeton.edu
1 Department of Electrical and Computer Engineering, Princeton 
University, Princeton 08544, NJ, USA

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13063-024-08661-1&domain=pdf
http://orcid.org/0000-0001-7877-1268


Page 2 of 12Lala and Jha ﻿Trials           (2025) 26:31 

(approximately $500 million USD per drug in year 2019), 
30–40% of these trials fail to proceed to market approval 
[3, 4], primarily because they have insufficient sample 
size [5]. This is because initial sample size calculations 
are based on noisy estimates of treatment effect param-
eters obtained from prior studies, if available, or internal 
pilot studies [1, 6].

Adaptive trial designs have been developed to improve 
sample size estimates by adjusting them based on interim 
analyses conducted over the course of the trial. Standard 
approaches for doing so include group sequential designs 
(GSD), stochastic curtailment, and trend-adaptive designs 
(TAD). A GSD can decrease the initial planned sample size 
by testing at each interim analysis. In order to control the 
significance level, the test boundary used at each analy-
sis needs to be increased [1]. Consequently, a GSD yields 
marginal reductions in sample sizes when the standardized 
treatment effect is larger than that used for planning [7]. 
For GSDs to be useful, a trial designer still needs to have 
a good prior over the range of the standardized treatment 
effect, otherwise risks underpowering or overpowering 
the study [7]. Stochastic curtailment is another approach 
that can decrease the initial planned sample size by termi-
nating trials that appear futile [1, 8]. It determines futil-
ity based on conditional power (CP), which extrapolates 
power at the final sample size conditioned on the value 
of the interim test statistic. If CP at any interim analy-
sis lies below some pre-specified futility threshold, the 
trial is terminated. Since stochastic curtailment is used 
to control the significance level and reduce resources 
expended by terminating early [8], it cannot be used to 
appropriately power studies. Instead of decreasing the ini-
tial planned sample size, TADs can increase it based on 
trends observed from interim data. Among trend-adaptive 
algorithms, those based on CP have been recommended 
since they can control significance level without making 
statistical adjustments to the test statistic and test critical 
value [1, 7, 9]. They do this by only permitting sample size 
increases when the trend in the data appears “promising,” 
a condition determined by CP at interim analysis. If CP 
is sufficiently high, i.e., 50% [9], or lies within a promising 
range [7], the final sample size can be increased. In prac-
tice, such TADs have marginal impact on increasing power 
since the probability of satisfying the CP criterion at an 
interim analysis remains low [7].

Given the limitations of existing adaptive designs, 
we present a new solution called Trend-Adaptive 
Design with a Synthetic-Intervention-Based Estimator 
(TAD-SIE). In contrast to existing TADs, it repeatedly 
increases the sample size based on individual treat-
ment effect (ITE) estimates obtained under synthetic 
intervention (SI) [10] and controls for significance level 
with futility stopping. Leveraging ITEs increases power 

and permitting sample size increases, while stopping for 
futility, enables TAD-SIE to yield solutions with better 
power and significance level compared to existing TADs. 
TAD-SIE also introduces a hyperparameter that allows 
users to toggle between solutions that are either more 
sample- or time-efficient. We empirically demonstrate 
TAD-SIE’s efficacy over baseline strategies on a sample 
real-world RCT dataset. Our work is useful for practi-
tioners interested in learning how to integrate SI into 
TADs.

The rest of the article is organized as follows. We pro-
vide background on topics relevant to our framework in 
the  “Background” section and then present the frame-
work in the “Methodology” section. We explain how we 
evaluate performance in the “Performance evaluation” 
section. We present our results in the “Results” section, 
discuss their implications in the “Discussion” section, and 
draw conclusions in the “Conclusion” section.

Background
In this section, we provide background on concepts rel-
evant to understanding TAD-SIE, which include the SI 
algorithm and a hypothesis testing procedure based on 
the SI algorithm.

SI
SI [10] is an algorithm that estimates counterfactual 
outcome trajectories under interventions different from 
the one that a unit (e.g., a patient) was exposed to dur-
ing the intervention period. To do this, first, it assumes 
that a pool of donor units exposed to the interventions 
(including the control) exists and that each unit has been 
assigned to the control arm during the pre-intervention 
period. Then, for a given target unit observed under some 
intervention j, SI calculates its counterfactual outcome 
under a different intervention k by weighting the post-
intervention outcomes across the donor units exposed to 
intervention k. It uses principal component regression to 
learn weights over the donor units such that the weighted 
sum of their pre-intervention outcomes best predicts the 
target unit’s pre-intervention outcome.

Hypothesis testing with SI
Previously, we developed a framework called SECRETS 
(Subject-Efficient Clinical Randomized Controlled Tri-
als using Synthetic Intervention) [11] that applies the SI 
algorithm to increase the power of an already-conducted 
clinical RCT. SECRETS first estimates the ITE per par-
ticipant using SI to reduce intersubject variability [1], as 
shown in Fig. 1. Afterwards, it uses a novel bootstrapping 
strategy illustrated in Fig.  2 to implement a hypothesis 
test that appropriately controls the type-1 error rate, given 
the dependencies present among the estimated ITEs.
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Methodology
TAD-SIE is a new TAD that leverages the SI-based 
hypothesis testing framework, i.e., SECRETS, to yield 
solutions converging closer to the target power and sig-
nificance level. The framework’s flowchart is illustrated 
in Fig.  3 and is shown for a common design, i.e., the 
two-arm parallel superiority trial with an equal num-
ber of participants per arm [1]. First, it implements an 
internal pilot study of size n0 to obtain initial estimates 
over key treatment effect parameters including the aver-
age treatment effect (ATE) ( δ0 ) and variance ( σ 2

0
 ) under 

SECRETS. Then, TAD-SIE implements a trend-adaptive 
algorithm that iteratively refines the estimates to con-
verge to an accurate estimate of the target sample size 
needed for target power. Specifically, TAD-SIE deter-
mines how much to increase the current sample size by 
( n�,i ) based on user-specified parameters and prior esti-
mates of treatment effect parameters obtained from the 

pilot study or prior iteration. It collects the additional 
RCT data, updates the estimates of treatment effect 
parameters using the accrued RCT data ( Xctrl,i, Xtreat,i ), 
and then assesses futility based on quantities computed 
in the iteration, including information fraction ti , which 
estimates what fraction of the final sample size has been 
collected. Finally, if the trial is not futile, TAD-SIE runs 
SECRETS to perform hypothesis testing.

Next, we describe the procedures underlying TAD-
SIE in more detail.

Estimation of treatment effect parameters
TAD-SIE estimates the mean and the variance of the ITEs 
using Algorithm 1. The ATE is given by the average of the 
ITEs calculated under SECRETS (line 6). Calculating the 
variance requires a new procedure because the standard 
sample size formula requires that the ITEs be independently 
and identically distributed (i.i.d.) according to a Gaussian 

Fig. 1  The flowchart of the ITE estimation step in SECRETS for a parallel two-arm design. Counterfactual treatment outcomes for each 
participant in the control group are generated by using the treatment arm as the donor data; counterfactual control outcomes for participants 
in the treatment arm are generated analogously (not shown for visual simplicity). After applying SI, SECRETS transforms each time-series datum 
to a scalar by applying the outcome function defined by the trial investigator. SECRETS then calculates the ITEs by taking the pairwise difference 
between each patient’s outcome under the treatment and control conditions

Fig. 2  The flowchart of the hypothesis testing step in SECRETS for a parallel two-arm design. SECRETS first estimates the null distribution 
with bootstrap sampling and then uses it to tune the testing critical value
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[12]. Since the distribution of the ATE under SECRETS is 
approximated by a normal distribution, per the theorem 
on Dependency Neighborhoods based on Stein’s method 
[13], the procedure first estimates the variance of the ATE 
and uses it to estimate the variance of a set of hypothetical 
ITEs satisfying the i.i.d. assumption that would also yield the 
observed distribution of the ATE. Specifically, it estimates 
the variance of the ATE under SECRETS with bootstrap 
sampling (lines 7–12) and then calculates the final variance 
based on the relationship between variance of a mean and 
variance of underlying i.i.d. samples (line 13).

Algorithm 1 estimate_moments 

Step size calculation
TAD-SIE determines by how much to increase the cur-
rent sample size using Algorithm 2. First, it estimates the 
arm size needed for target performance using the sample 
size formula evaluated under the target performance level 
(significance level α and power 1− β ) and current esti-
mates of the treatment effect parameters (line 1). Then, it 

calculates the step size nstep based on user-specified hyper-
parameters. Specifically, it scales the target sample size 
increase according to the step_size_scale_factor (capped 
to 1 to avoid overpowering) and ensures that the step size 
is nonnegative and does not exceed resource constraints 
determined by the maximum arm size nmax (lines 2–3). 
step_size_scale_factor determines how fast the algorithm 
terminates, with larger values resulting in fewer iterations 
at the cost of larger sample sizes since the sample size is 
increased at a higher rate. In addition, Algorithm  2 also 
estimates the information fraction t resulting from the 
sample size increase since this is used for futility stopping. 
t is calculated by determining the maximum possible step 
size and then taking the ratio of the updated sample size 
over the estimated final sample size (lines 4–6).

If nstep is 0, TAD-SIE terminates the trend-adaptive 
algorithm. Otherwise, it collects the additional RCT data, 
uses the dataset to revise the treatment effect parameters 
(Algorithm 1), and then checks for futility.

Algorithm 2 get_step_size 

Futility assessment
TAD-SIE checks for futility by implementing the sto-
chastic curtailment procedure given in Algorithm  3. 

Fig. 3  The flowchart of the TAD-SIE framework
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It calculates CP based on estimates of treatment effect 
parameters, the current sample size, and information 
fraction (lines 1–2), and then marks the trial as futile if 
the CP estimate is below futility_power_boundary, a user-
specified hyperparameter (line  3). TAD-SIE terminates 
the trend-adaptive algorithm if the trial is futile, in which 
case it fails to reject the null hypothesis and accepts it by 
convention [12]. If the trial does not fail by futility, TAD-
SIE performs hypothesis testing with SECRETS using the 
final RCT dataset.

Algorithm 3 check_for_futility 

Performance evaluation
In this section, we describe performance metrics and 
the dataset used to evaluate TAD-SIE. We describe 
the baseline algorithms against which we compare our 
approach and describe the ablation studies done to 
demonstrate the contribution of each novel component 
of TAD-SIE. We also provide implementation details of 
the algorithms and experiments.

Performance metrics
We set target power, 1− βtarget , to 80% and target signif-
icance level, αtarget , to 5%, following typical target oper-
ating points [1]. We measure power and significance 
level obtained by TAD-SIE and baseline algorithms fol-
lowing the approach from [14], which simulates many 
trials under the alternative and null settings and calcu-
lates the percentage of trials where the test procedure 
returns a reject, respectively. Specifically, we simulate a 
trial under the alternative setting by constructing new 
control and treatment arms with subjects sampled with 
replacement from the original RCT’s control and treat-
ment arms, respectively. Similarly, we simulate the null 
setting by constructing both the control and treatment 
arms with subjects sampled with replacement from the 
original RCT’s control arm.

For TAD-SIE, we also report the final arm size and 
number of iterations that a trial takes in order to char-
acterize TAD-SIE’s efficiency.

Dataset
We evaluate the framework on a real-world clinical 
phase-3 parallel-group RCT and demonstrate it for a 
two-arm superiority trial, a design typically adopted 
in clinical RCTs [1]. We obtained the dataset for a 
sample trial, e.g., CHAMP (NCT01581281), [15, 16], 
from the National Institute of Neurologic Disease and 
Stroke (NINDS) [17]. Additional details can be found in 
the Appendix: Dataset section.

Baselines
We compare TAD-SIE against two baseline algorithms. 
Both algorithms implement parallel-group RCTs follow-
ing a two-arm superiority setup and therefore use the 
two-sample t-test for independent samples with unequal 
variances for hypothesis testing [12]. The approaches dif-
fer in how they determine the final sample size.

The fixed sample design baseline is a standard 
approach for study planning that calculates the sample 
size required for target power and target significance 
level using Eq.  (1), where the ATE δ and variances for 
the control and treatment arms, σ 2

ctrl and σ 2
treat , are pre-

specified or estimated from a prior study [1, 7]. Since 
domain knowledge may not be available to appropriately 
pre-specify these parameters, the baseline implements 
a small internal pilot study to estimate these parameters 
[6]. The baseline then conducts an RCT according to the 
calculated sample size, which is capped at a maximum 
arm size set by trial constraints [7].

We also implement a traditional adaptive design that 
can increase the initial sample size calculated by the fixed 
sample design strategy in order to increase power. We 
adopt a TAD based on CP and specifically implement the 
algorithm from [9], given its simplicity, which we refer to 
as standard TAD. Specifically, at each interim analysis, 
it increases the sample size according to the sample size 
formula when CP is above 50%.

Ablation studies
We validate the importance of each component in TAD-
SIE using several ablation studies. First, we swap the 
proposed variance estimation procedure (Algorithm  1) 
with a naive approach that uses the variance of the ITEs 

(1)na =
σ 2
control + σ 2

treat z1−α/2 + z1−β
2

δ2
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(thereby assuming that the ITEs are i.i.d. [12]). Next, we 
swap the proposed TAD with a standard TAD [9] to show 
that an approach implementing a rule for sample size 
increases, based on control over significance level, will 
fail to reach the target operating point since increases 
are rare. Finally, we modify TAD-SIE so that it performs 
sample size estimation based on standard hypothesis 
testing instead of SECRETS to show that a TAD designed 
for a powerful testing scheme is necessary for reaching 
the target operating point. Additional implementation 
details for the ablations are presented in the  Appendix: 
Ablations section.

Implementation details
We describe the hyperparameters used by TAD-SIE and 
the baseline algorithms. Additional experimental and 
computing details are provided in the Appendix: Imple-
mentations details section.

Hyperparameters for TAD-SIE are reported in Table 1. 
While most hyperparameters can be determined from 
prior work, step_size_scale_factor is a new hyperparam-
eter introduced by TAD-SIE; hence, we sweep over values 
over the domain of the hyperparameter in increments of 
0.1 to characterize its effect on performance. Hyperpa-
rameter details for SECRETS are specified in the Appen-
dix: Implementation details section.

The baseline algorithms use the same values used by 
TAD-SIE for n0 , α , 1− β , and nmax . For Standard TAD, 
we set the number of interim analyses to 1 since this is 
common in practice [7] and perform interim analysis at 
the initial planned sample size by setting t = 0.99 (CP 
is undefined at t = 1 ) since this is ideal for assessing 
whether the sample size can be increased and the amount 
by which it needs to be increased [7].

Results
First, we compare the performance of TAD-SIE against 
baseline strategies. Then, we analyze the effect of hyper-
parameters on TAD-SIE’s performance. Finally, we ana-
lyze the results from the ablation studies.

TAD‑SIE vs. baselines
TAD-SIE yields superior operating points compared to 
the baseline strategies, as shown in Fig.  4. Fixed sam-
ple design results in lower power (48%) and higher sig-
nificance level (9%) since it uses noisy estimates obtained 
from a small pilot study to estimate the required sam-
ple size. Standard TAD improves upon the fixed sample 
design by allowing the initial sample size estimated under 
fixed sample design to be increased based on interim 
data; however, the actual improvement is marginal (i.e., 
power increases to 49% while significance level decreases 
to 6%) since few trials perform an increase when H1 holds 
given that Standard TAD imposes a stringent condition 
for when the sample size can be increased in order to 
control the significance level. Specifically, when H0 holds, 
7% of trials meet the criterion and 4% of trials increase 
the sample size, thereby preventing type-1 inflation; how-
ever, when H1 holds, only 51% of trials meet the criterion 
and 17% of trials increase the sample size, thereby pre-
cluding gains in power. In contrast, the operating points 
generated with TAD-SIE under different combinations 
of step_size_scale_factor and futility_power_boundary 
have substantially better performance, with power rang-
ing between 63% to 84% and significance levels ranging 
between 3 and 6% (90% of hyperparameter configura-
tions have significance levels no worse than 5%).

Effect of hyperparameters on TAD‑SIE’s performance
Since TAD-SIE yields operating points spanning a large 
range over power, we characterize the effect of the step_
size_scale_factor on power, which is shown in Fig.  5. 
For a given value of futility_power_boundary, increas-
ing step_size_scale_factor generally decreases power 
because it increases the chance for futility stopping. Spe-
cifically, increasing step_size_scale_factor increases the 
information fraction t since t is more likely to be deter-
mined by step_size_scale_factor at initial interim analyses 
when the arm size is small (per line 6 in Algorithm  2). 
A higher information fraction shrinks CP over a large 
range of test statistic values, as shown in Fig. 6, thereby 
triggering futility stopping. Note that increasing futil-
ity_power_boundary decreases power across all values of 
step_size_scale_factor by invoking futility stopping more 
readily.

In addition to its impact on power, step_size_scale_fac-
tor affects the solution’s efficiency (i.e., final sample size 
and number of iterations). The effect is shown in Fig. 7. 
Increasing step_size_scale_factor improves the time effi-
ciency but reduces the sample efficiency. For example, 
when step_size_scale_factor is 0.1, the median number of 
iterations incurred is 5 and the median arm size is 387.5, 
and when step_size_scale_factor is 0.9, the median num-
ber of iterations incurred is 2 and the median arm size is 

Table 1  Hyperparameters used for TAD-SIE. The "Reference" 
column lists references that support the choice of the 
hyperparameter value 

Hyperparameter Value Reference

n0 30 [18, 19]

B 100 [11]

α 5% [1]

1− β 80% [1]

nmax 1500 [20]

step_size_scale_factor (0, 1] n/a

futility_power_boundary [10, 20%] [21]
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562.5. This tradeoff occurs because increasing step_size_
scale_factor increases initial step sizes, which can over-
shoot and cause the algorithm to terminate earlier since 
the step size goes to zero in a later iteration; in addition, 
increasing step_size_scale_factor increases the chance for 
futility stopping through its effect on information frac-
tion. Similar trends are observed when H0 holds although 
the tradeoff is less pronounced since futility stopping is 
more likely to be invoked.

Ablation studies
Next, we present results from the ablation studies. First, 
we show that the proposed variance estimation pro-
cedure used in Algorithm  1 is more effective than the 
naive variance estimation strategy. As can be seen from 
Fig. 8, the proposed strategy generally has lower bias in 

the estimation of the variance of the ATE compared to 
the naive strategy, especially under low sample sizes (at 
the maximum sample size, the range of the estimation 
bias is larger under the proposed strategy but the range 
is small). This result demonstrates that our variance esti-
mation procedure is more effective by accounting for the 
dependencies present across the ITEs compared to the 
naive approach that assumes that the ITEs are i.i.d.

Next, we demonstrate that the proposed trend-adap-
tive algorithm is more effective than the standard one. 
Swapping the proposed algorithm with the standard one 
yields a single operating point of 62% power and 6% sig-
nificance level (the standard trend-adaptive design does 
not introduce the step_size_scale_factor and futility_
power_boundary hyperparameters). This operating point 
is inferior to the range of operating points generated 

Fig. 4  A comparison of the operating points defined by significance level and power obtained across the different methods

Fig. 5  The effect of step_size_scale_factor and futility_power_boundary on power under TAD-SIE
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under the proposed TAD. Power drops substantially 
under the standard algorithm because it imposes a strin-
gent condition based on CP that precludes trials from 
increasing their sample sizes after the initial sample size 
calculation in order to control the significance level. The 
effect is seen in Fig. 9. In particular, when H1 holds, only 
13% of trials increase the sample size at least once under 
the standard algorithm while 17% to 73% do so under the 
proposed algorithm. Similar trends are observed under 
H0 although the fraction of trials performing an increase 
is lower due to futility stopping.

Finally, we demonstrate that the proposed hypothesis 
testing scheme is more effective than the standard one. 

Figure 10 shows that the algorithm that uses SECRETS for 
hypothesis testing yields superior operating points com-
pared to the version that uses the standard two-sample 
t-test; for example, the proposed strategy gets at least 
77% power and 5% significance level while the stand-
ard strategy gets at best 58% power and 5% significance 
level. SECRETS is more effective at reaching target power 
because it simulates the cross-over design to boost power.

Discussion
Having demonstrated the superiority of TAD-SIE over 
existing frameworks for sample size estimation and 
having vetted the significance of each component to 

Fig. 6  CP under two-sided testing as a function of z, the interim test statistic, and t, the information fraction. Function plotted over nonnegative 
values of z since the function is symmetric in z 

Fig. 7  The effect of step_size_scale_factor on the number of iterations incurred and arm size obtained under TAD-SIE when the futility power 
boundary is 0.10. The curves represent the medians and the error bars correspond to interquartile ranges
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TAD-SIE’s performance through ablation studies, we 
discuss practical issues, i.e., design decisions and limita-
tions, to guide the practitioner in applying the TAD-SIE 
framework. Specifically, TAD-SIE introduces the step_
size_scale_factor hyperparameter that controls the rate 
at which the sample size is increased. While this hyper-
parameter can be selected based solely on resource con-
straints, it also affects the operating points obtained, 
with larger values yielding lower power through its 
interaction with futility stopping. Our empirical 

findings suggest that moderate values (0.3–0.6) can bal-
ance the two objectives, that is, achieve operating points 
with high power while maintaining some efficiency in 
the trial duration and sample size. However, TAD-SIE 
inherits limitations of adaptive designs, namely that the 
iterative nature of the algorithm prevents it from being 
practical in trials conducted on outcomes that take too 
long to measure (e.g., mortality). Our future work will 
extend TAD-SIE to address such settings by having it 
estimate the primary outcome from rapidly measurable 

Fig. 8  Comparison of the magnitude of the estimation bias of the variance of the ATE under the proposed and naive methods across different arm 
sizes (columns) and settings, i.e., H1 or H0 (rows). Histogram counts per arm size are obtained from 100 bootstrap samples

Fig. 9  Comparison of the fraction of trials that increase the sample size at least once under the standard and proposed TADs. The histogram 
over the proposed version is generated by sweeping over hyperparameter configurations
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surrogate outcomes rather than directly measuring its 
value [22], given that trials collect data across other 
response variables [1, 23].

Conclusion
In conclusion, we presented TAD-SIE, a novel TAD that 
integrates SI to better reach target power and significance 
level for a parallel-group RCT in the absence of reliable 
sample size estimates obtained for study planning. Specifi-
cally, TAD-SIE uses estimates of ITEs obtained under SI to 
increase power and introduces a procedure to effectively 
calculate the parameters defining the treatment effect given 
that SI induces dependencies across the ITEs. Furthermore, 
in contrast to a standard TAD, TAD-SIE permits many 
iterations of sample size increases while controlling signifi-
cance level with futility stopping. We have demonstrated 
TAD-SIE’s effectiveness over baseline approaches on a real-
world phase-3 clinical RCT, showing that it obtains supe-
rior operating points ranging between 63% to 84% power 
and 3% to 6% significance level, in contrast to baseline 
methods that get at best 49% power and 6% significance 
level. We have also characterized the effect of a new hyper-
parameter introduced in TAD-SIE that trades off between 
accuracy and efficiency (e.g., time and sample size) of the 
solution in order to guide the practitioner. To make TAD-
SIE broadly applicable, our future work will speed up each 
iteration of the algorithm by predicting the outcome of 
interest based on rapidly measurable surrogate outcomes.

Appendix A: Performance evaluation
In this section, we present additional details on our 
experimental setup.

Dataset
The CHAMP study [15] conducted an RCT to compare the 
effect of different medications (amitriptyline and topira-
mate) on mitigating headaches. We construct a dataset cor-
responding to a two-arm superiority trial. Specifically, we 
set the control arm to be the group exposed to amitriptyline 
and the treatment arm to be the group exposed to topira-
mate and define the ATE to be the difference between their 
average outcomes, where the outcome is the change in the 
score on the Pediatric Migraine Disability Assessment Scale 
between the 24-week endpoint and the baseline visit. This 
setup yields a dataset of 204 subjects, with 106 in the ami-
triptyline group and 98 in the topiramate group, where the 
ATE is − 3.17 units, somewhat comparable to the − 4.3 
units reported in the study [16].

Implementation details
For SECRETS, we use the hyperparameter settings from 
[11].

For evaluation, we set the number of trials to 100 since 
this was sufficient for powers and significance levels to sta-
bilize. For implementation ease, we pre-computed results 
across arm sizes sampled between the pilot study size to 
the maximum arm size and then projected interim and 
final sample sizes to this set. We sampled in increments of 
25 since this was sufficient for consecutively sampled arm 
sizes to have comparable means and variances.

We implemented the framework and experiments with 
Python using standard numerical packages and con-
ducted experiments using 28–32 CPU cores, 2–4GB of 
memory per CPU, and Intel processors (e.g., 2.4 GHz 
Skylake and 2.6 GHz Intel Skylake).

Fig. 10  Comparison of operating points generated under the proposed hypothesis testing scheme compared to the standard one
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Ablations
To implement the ablation on the hypothesis testing 
scheme, we appropriately modify TAD-SIE to make it 
suitable for standard hypothesis testing. Specifically, we 
modify estimate_moments to calculate the ATE and vari-
ances of the outcome over the control and treatment 
groups based on the original RCT data; these equations 
are captured in Eq. (2), where ocontrol and otreat are vectors 
that contain primary outcomes per subject in the con-
trol and treatment groups, respectively. We also modify 
get_step_size so that it takes in the variance for the con-
trol and treatment groups and uses the appropriate sam-
ple size formula, i.e., Eq. (1), in line 1 of Algorithm 2; we 
do not divide by two since Eq. (1) returns the sample size 
per arm. We modify check_for_futility similarly so that 
it takes in the two variance terms and uses the appro-
priate test statistic formula, i.e., Eq.  (3) [12], in line 1 of 
Algorithm  2. Finally, we switch the hypothesis testing 
procedure from SECRETS to the two-sample t-test for 
independent samples with unequal variances [12].
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